

STAKEHOLDER COMMITTEE MEETING AGENDA

Thursday, February 5, 2026, Convenes at 10:00 a.m.

<http://www.portervilleid.org> / PIDGSA@ocsnet.net

22086 Avenue 160, Porterville, CA 93257

Web Meeting Attendance Available for Interested Parties:

Join Zoom Meeting

<https://us06web.zoom.us/j/84319138554>

Meeting ID: 843 1913 8554

Passcode: Hu9n5p

One tap mobile

+16694449171,,6707587901#,,,*478530# US

+17207072699,,6707587901#,,,*478530# US

-----AGENDA-----

Action items are listed in **bold**.

1. CALL TO ORDER

Roll Call

Flag Salute

2. PUBLIC COMMENT

At this time, members of the public may comment on any item not appearing on the agenda. Under state law, matters presented under this item cannot be discussed or acted upon by the Committee at this time. For items appearing on the agenda, the public is invited to provide comments at the time the Committee considers the item. Any person addressing the Committee will be limited to a maximum of three (3) minutes, or at the Chairman's discretion. At all times, please state your name for the record.

3. ANNOUNCEMENTS

a. Ongoing efforts for the transition from ETGSA to PID GSA.

4. CONSENT CALENDAR

- a. Consider Approval of October 2, 2025, GSA Board Minutes (Action).**

5. POLICY DISCUSSION

- a. Committee discussion on the Draft PID GSA Hydrogeologic Conceptual Model.**
- b. Committee discussion on the Draft PID GSA Water Budget.**

6. OTHER MATTERS

- a. Future discussion items.**

7. NEXT MEETING DATE

- a. Next Regular Stakeholder Meeting – **Thursday, March 5, 2026, at 10:00 a.m.****

9. ADJOURNMENT

A person with a qualifying disability under the Americans with Disabilities Act of 1990 may request the PIDGSA to provide a disability-related modification or accommodation in order to participate in any public meeting. Such assistance includes appropriate alternative formats for the agendas and agenda packets used for any public meetings of the GSA Committee. Requests for such assistance and for agendas and agenda packets shall be made in person, by telephone, facsimile, or written correspondence to the General Manager of the Porterville Irrigation District GSA at (559) 782-6321, at least 48 hours before a public meeting.

Agenda Item 4.a

CONSENT CALENDAR

Staff Report to the Porterville Irrigation District GSA Stakeholder Committee

Subject: CONSENT CALENDAR / Consideration and approval of October 2, 2025, GSA Stakeholder Committee Minutes (Action).

Submitted By: General Manager

**MINUTES OF THE
STAKEHOLDER COMMITTEE
MEETING HELD OCTOBER 2, 2025**

At approximately 10:00 a.m. on October 2, 2025, at the Porterville Irrigation District, Board Room, Chairman Brett McCowan called to order the meeting of the Stakeholder Committee of the Porterville Irrigation District Groundwater Sustainability Agency (“PIDGSA”). The meeting was also conducted remotely for members of the public.

Members Present:

Brett McCowan
Adam Mendoza
David Payne
Michael DePaoli
Dyson Schneider
Mathew Kidder

Michael George
Nick Gatti
Robert Alvarez
William Wallace
Seth Bowser

Members Absent:

Jason Guthrie

Others Present:

Michael Knight, *GSA Manager*
Sean Geivet, *District Manager*
Aubrey Mauritson, *District Legal Counsel*
Nick Keller, *District Engineer*
Jeff Row, *District Secretary-Treasurer*

List of signed-in attendees:

CALL TO ORDER

Chairman Brett McCowan called the meeting to order at 10:00 a.m.
Flag salute, Michael Knight.

1. PUBLIC COMMENT

Chairman Brett McCowan opened the floor for public comments. No public comments were received.

2. ANNOUNCEMENTS

Staff provided brief announcements related to the formation of the PID GSA, upcoming transition milestones from the Eastern Tule GSA (ETGSA), and future stakeholder engagement opportunities.

3. MINUTES

This was the inaugural meeting of the PID GSA Stakeholder Committee. No prior minutes were presented for approval.

4. POLICY DISCUSSION

a. Committee discussion on the Board Action of Approved Bylaws on August 12th, 2025.

Staff reviewed the PID GSA Board's adoption of bylaws establishing Board advisory committees, including the Stakeholder Committee.

Key points highlighted:

- The Stakeholder Committee serves in an advisory capacity.
- The Committee represents beneficial uses and users of groundwater pursuant to Water Code Section 10723.2.
- Meetings are subject to the Ralph M. Brown Act.

Committee members acknowledged the update and discussed the advisory role and expectations moving forward.

b. Committee discussion on the Board Action of Approved Rules & Regulations at its Special Meeting on August 22nd, 2025.

Staff provided an overview of the adopted Rules and Regulations governing groundwater monitoring, accounting, allocations, fees, and enforcement.

Discussion topics included:

- Well registration requirements
- Metering versus evapotranspiration (ET) methodologies
- Priority of use (typo on section identification)

- Allocation structure and appeal processes
- Carryover and Transfers (limitation on allowable transfer outside of GSA boundaries)
- Watercourses (allocation accounting)
- Land subsidence management provisions

Committee members asked clarifying questions about implementation timelines and landowner communication. Staff noted that outreach materials and guidance documents are in development. Comments will be considered in future updates to the Rules & Regulations.

c. Receive comments from the Committee on the established date, time, and frequency of the Stakeholder Meetings.

Staff reviewed the Board's action appointing:

- Brett McCowan as Chair
- Eric Borba as Vice Chair

Staff confirmed that regular Stakeholder Committee meetings will be held on the first Thursday of each month at 10:00 a.m.

Committee members expressed support by a motion for the established meeting schedule and the term of the appointed members identified in the Bylaws. No changes were requested.

Action: Motion by Committee Member Wallace, seconded by Committee Member George, to approve the Stakeholder Committee's established date, time, frequency, members, and terms as outlined in the Bylaws.

d. Committee discussion on Tier 1 Allocation Transfer and Retirement before transition into Porterville Irrigation District GSA.

Staff presented an update on prior PID Board action directing that Tier 1 Penalty Allocations not be issued within PID's jurisdiction following the Tule Subbasin's probationary status.

Discussion included:

- Coordination with Eastern Tule GSA to ensure Tier 1 allocations are expired and not reallocated prior to the November 14, 2025, transition.
- Estimated remaining Tier 1 volumes and treatment of previously purchased water.
- Importance of consistency with SGMA compliance and fairness among landowners.

Committee members discussed the need for clear communication to landowners regarding the status of Tier 1 water and the transition process. The Committee expressed support via a Motion recommending the removal of the Tier 1 allocation during importing accounts into

the PID GSA and encouraged continued coordination with ETGSA.

Action: Motion by Committee Member Kidder, seconded by Committee Member George, to approve the Stakeholder Committee's recommendation to the PID GSA Board to remove Tier1 Transitional Water from future allocation.

e. Options for discussion on funding the Operating Costs of the GSA.

Staff outlined anticipated operating costs for the PID GSA and discussed potential funding methodologies, including:

- Per-acre assessments
- Volumetric (use-based) charges
- Potential need for a Proposition 218 process

Committee discussion focused on:

- Equity considerations between acreage-based and use-based approaches
- Administrative feasibility
- Transparency and landowner understanding

No formal recommendation was made. Committee members requested additional information and examples before providing formal guidance to the Board.

f. Review options of New Logo for the Porterville Irrigation District GSA.

Staff presented proposed logo concepts developed for the PID GSA to establish a distinct visual identity.

Committee feedback included:

- General support for a standalone PID GSA logo
- Interest in ensuring consistency with the District's existing branding
- Interest in the readability and scalability

Staff provided several versions of the GSA logo and requested feedback on a selection from the revised options. The committee selected the logo with the smallest reference to the Irrigation District and the largest GSA print. The Committee reached consensus on a recommendation to the GSA Board.

5. OTHER MATTERS

Committee Member Wallace suggested future discussions on:

- How the Minutes are going to be presented (more details in the minutes)

6. NEXT MEETING DATE

g. Next Regular Stakeholder Meeting – Thursday, November 6, 2025, at 10:00 a.m.

The next regular meeting of the PID GSA Stakeholder Committee is scheduled for: Thursday, November 6, 2025, at 10:00 a.m.

7. ADJOURNMENT

There being no further business before the Stakeholder Committee, Chairman Brett McCowan adjourned the meeting at 12:24 p.m.

Respectfully submitted,

Michael Knight, GSA General Manager

Agenda Item 5.a

CONSENT CALENDAR

Staff Report to the Porterville Irrigation District GSA Stakeholder Committee

Subject: POLICY DISCUSSION / Committee discussion on the Draft PID GSA Hydrogeologic Conceptual Model.

Submitted By: General Manager

The purpose of this staff report is to present the Hydrogeologic Conceptual Model (HCM) developed for the PID GSA and to explain how it informs groundwater management decisions under the Sustainable Groundwater Management Act (SGMA). This item is informational and intended to support stakeholder understanding of local groundwater conditions, recharge potential, and the physical framework used for future modeling, monitoring, and management actions.

SGMA requires each Groundwater Sustainability Agency to develop a clear understanding of how groundwater moves through its basin, how it interacts with surface water and land use, and how pumping and recharge affect long-term sustainability. This understanding is documented in the Hydrogeologic Conceptual Model (HCM).

The PID GSA HCM was developed in accordance with California Code of Regulations, Title 23, Section 354.14, and consistent with DWR Best Management Practices. The HCM builds upon work completed at the Tule Subbasin level and incorporates PID-specific data, including soils, geology, well information, aquifer properties, and recharge potential. The HCM serves as the foundation for numerical groundwater modeling, water budgets, monitoring network design, and sustainability management actions

Summary of the Hydrogeologic Conceptual Model

Geographic and Basin Setting

The PID GSA is located within the Tule Groundwater Subbasin, bounded by the Sierra Nevada foothills to the east and adjacent GSAs to the north, west, and south. The GSA spans approximately five miles east-to-west and exhibits a gentle westward slope averaging about one percent. Land surface elevations range from roughly 450 feet above mean sea level (amsl) in the east to approximately 370 feet amsl toward the west.

Soils and Recharge Characteristics

Soil conditions within PID vary considerably and strongly influence recharge potential:

- Tagus and Nord Loams are deep, permeable soils without hardpan layers and provide the most favorable conditions for groundwater recharge.
- Exeter and Flamen Loams contain duripans (hardpans) at varying depths, which restrict vertical percolation unless mechanically altered.

Recharge potential mapping using the Soil Agricultural Groundwater Banking Index (SAGBI) indicates that most of PID is classified as poor to moderately poor for natural recharge. Higher recharge potential areas occur primarily along the Tule River corridor and portions of the central GSA. SAGBI is a screening-level tool and does not replace site-specific feasibility analyses for recharge projects.

Geologic Framework

The PID GSA is underlain by layered alluvial deposits typical of the eastern San Joaquin Valley. Key geologic units include:

- Upper Aquifer: Shallow, unconfined to semi-confined, extending approximately 150-200 feet below ground surface.
- Lower Aquifer: Semi-confined at greater depths, thickening toward the west.
- Pliocene Marine Deposits: Low-permeability confining unit separating deeper aquifers.
- Santa Margarita Formation: Deep, permeable formation that supplies water to some agricultural wells but is largely disconnected from shallow groundwater dynamics.
- Granitic Basement: Forms the bottom of the groundwater basin and is considered impermeable.

Unlike western portions of the Tule Subbasin, the Corcoran Clay is not present beneath PID, although localized confining layers may occur.

Aquifer Properties

Aquifer testing and regional analyses indicate:

- Upper Aquifer hydraulic conductivity: Approximately 10-20 ft/day in the southeast, increasing to 60-80 ft/day in northern and central areas.
- Lower Aquifer hydraulic conductivity: Generally lower, ranging from less than 10 ft/day to approximately 40 ft/day, depending on location.
- Specific yield (Upper Aquifer): Ranges from very low values (0.001) to greater than 0.25, reflecting variable sediment texture. In other words, in the upper water layer, the amount of water we can actually pump out varies significantly. In some areas, the ground retains water tightly (like thick clay), while in others, it allows water to flow freely (like loose gravel).
- Storativity (Lower Aquifer): Consistent with confined to semi-confined conditions, with values ranging from approximately 8.0e-06 to 3.6e-04. The lower water layer is tightly packed and under pressure. The data indicate it behaves like a sealed system, with water released sparingly compared with the more open upper layers.

These properties influence how groundwater levels respond to pumping, recharge, and drought conditions.

Recharge and Discharge Processes

Groundwater recharge within PID occurs primarily through:

- Deep percolation of applied irrigation water
- Seepage from unlined canals and river reaches
- Infiltration along the Tule River corridor

Groundwater discharge occurs mainly through agricultural and municipal pumping, with limited natural discharge to surface waters. No springs or wetlands are present within the PID GSA.

Stakeholder Considerations

For stakeholders, the HCM helps answer key questions such as:

- Why do groundwater conditions vary across PID
- Where recharge is most feasible and where it is limited
- How local geology affects pumping impacts
- Why management actions may differ by area

Stakeholder input is important as the PID GSA transitions from conceptual understanding to the implementation of management actions.

Next Steps

- Incorporate HCM into ongoing groundwater modeling efforts
- Use HCM outputs to inform future allocation, recharge, and monitoring discussions
- Continue coordination with neighboring GSAs at the Tule Subbasin level
- Periodically update the HCM as new data becomes available

Staff Recommended Actions

Is that the Committee receives and discusses the Hydrogeologic Conceptual Model (HCM) for the Porterville Irrigation District Groundwater Sustainability Agency (PID GSA).

SECTION 2

2.2. Hydrogeologic Conceptual Model

The hydrogeologic conceptual model (HCM) provides information on the groundwater flow system of the PID GSA, and it describes the Subbasin's interactions with land use and surface water of the area. The HCM provides descriptions of the geologic setting, geologic structure, boundary conditions, and principal aquifers and aquitards. Additionally, it provides a framework to develop a numerical groundwater flow model of the Subbasin, water budgets, and monitoring networks. This HCM for PID GSA has been developed in accordance with the requirements of California Code of Regulations, Title 23, Division 2, Chapter 1.5, Subchapter 2, Article 5, Subarticle 2 (§354.14) and in consideration of DWR's Best Management Practices (BMP).

The HCM was developed utilizing information included in the *Tule Subbasin Setting* (Thomas Harder & Co., 2024b) of the Tule Subbasin Coordination Agreement and the ETGSA GSP (Thomas Harder & Co., 2024c), along with additional public and local data sets.

2.2.1. Topography

The terrain throughout the Subbasin is relatively level, with a gentle slope falling from east to west. The low-lying foothills of the Sierra Nevada Mountain Range in the east are the only major topographical feature within the Subbasin. Land surface elevation throughout the Subbasin ranges from approximately 850 ft amsl, along the eastern edge, to approximately 200 ft amsl along the western edge (Thomas Harder & Co., 2024b).

A map of ground surface elevation across PID is presented in **Figure 2-8**. PID is characterized by an increasingly flat topography moving east to west across the GSA. In the eastern portion of PID, adjacent to the foothills of the Sierra Nevada Mountains, land surface elevation is approximately 450 ft amsl. Moving to the west, land surface elevation within the GSA is approximately 370 ft amsl. The PID GSA is approximately 5 miles wide, with an average slope of 1% falling west.

2.2.2. Soils

Soil characteristics are described for the Subbasin in Section 2.1.6 of the *Subbasin Setting*. A map of soils within PID was developed from the USDA's Natural Resources Conservation Service (NRCS, 2025) and is presented in **Figure 2-9**. As part of the NRCS soil surveys, soil map units are defined to express similarities between soils within similar landform and landscape position. The dominant soil types within the GSA include naturally fertile soils like Mollisols and Alfisols. Mollisols are thick, dark, organic rich (mollic epipedon) which typically form under long-term grassland vegetation. These soils are highly fertile and have excellent vertical permeability. Alfisols on the other hand have greater clay content which results in the development of a duripan (i.e. hardpan) which limits vertical permeability. Soils series that dominate PID include Exter, Tagus, Flamen, and Nord loam (NRCS, 2025).

2.2.2.1 Exeter Loam

The Exeter Loam is a moderately deep, well-developed soil found on stable alluvial fans and terraces on the eastern San Joaquin Valley. This soil is categorized as Alfisol. It is characterized by a brown, medium-textured loam surface that transitions into a reddish-brown clay loam subsoil with depth. This profile development is a result of long-term weathering of granitic alluvium, leading to a gradual accumulation of clay and iron oxides. At a depth typically between 20 and 40 inches lies a critical feature of this soil which is a silica-cemented duripan (i.e. hardpan). This hardpan is extremely dense and indurated, creating a nearly impenetrable barrier to both root growth and the downward movement of water.

From a hydrogeologic perspective, the Exeter Loam acts as a restrictive layer that significantly influences local water dynamics near PID GSA. Because the saturated hydraulic conductivity drops off sharply at the duripan, the vertical recharge to the Upper Aquifer is negligible in undisturbed areas. This soil requires mechanical ripping to break down the duripan, a process that artificially increases permeability.

2.2.2.2 Tagus Loam

In contrast to the Exeter Loam, the Tagus loam is a very deep, well drained soil that lacks a restrictive duripan, making it a much more favorable profile for vertical water movement. This soil is categorized as a Mollisol. The Tagus series formed from granitic alluvium and is characterized by a thick, dark, organic-rich surface layer. The profile typically consists of a grayish-brown loam that transitions into a light yellowish-brown fine sandy loam or loam with depth. A key feature of this soil is its calcic horizon, where secondary calcium carbonate (lime) has accumulated as filaments or soft masses, usually starting between 10 and 20 inches below the surface.

From a hydrogeologic perspective, this soil is categorized as having moderate permeability throughout its entire depth, which can extend well beyond 60 inches. For this reason, the Tagus Loam is ideal recharge projects because it is very deep and lacks a hardpan.

2.2.2.3 Flamen Loam

The Flamen Loam is a deep, moderately well drained soil found on nearly level stream terraces around PID GSA. It is characterized by a thick, dark mollic epipedon (i.e. a nutrient-rich surface layer) that typically extends 20 to 40 inches deep. This grayish-brown loam surface transitions into a brown or dark brown loam or clay loam subsoil. While it shares many characteristics with the Tagus series due to its dark subsurface, the defining feature of the Flamen Loam is the presence of a silica rich hardpan at a depth between 40 and 60 inches.

From a hydrogeologic perspective, this soil is a middle ground between the restrictive Exeter Loam and the permeable Tagus Loam. With a deeper hardpan at a depth around four feet, the Flamen Loam allows for a greater volume of moisture storage and deeper root zone penetration before reaching a restrictive boundary. This unit may not be as ideal for recharge projects as the Tagus Loam as a restrictive hardpan is present.

2.2.2.4 Nord Loam

The Nord Loam consists of very deep, well-drained soils that are formed in mixed alluvium derived from granitic and sedimentary rocks sources. This soil is categorized as a Mollisol. Typically found on level floodplains and alluvial plains with slopes less than 2%, these soils are widely distributed along the eastern side of the San Joaquin Valley. The profile is characterized by a thick, dark-colored surface layer that is a grayish-brown loam or fine sandy loam. Similar to the Tagus Loam, the Nord Loam completely lacks a hardpan within 60 inches of the surface.

From a hydrogeologic perspective, this soil is ideal for recharge projects. It possesses moderate to high permeability (0.6 to 2 inches per hour).

2.2.3. Geological and Structural Setting

The regional geologic and structural setting describing the entire Subbasin is described in **Chapter 2.2.2** of the *Tule Subbasin Setting* (Thomas Harder & Co., 2024b).

PID is located within California's Great Valley Geologic Province (**Figures 2-1 and 2-2**). A map of the surficial geology is presented in **Figure 2-10**. PID GSA is underlain by alluvium (Q). This unit is Quaternary in age and is made up of unconsolidated to semi-consolidated sand, gravel, and clay, forming alluvial plains, fans, and terraces (Thomas Harder & Co., 2022; 2024b).

Five geologic formations have been identified across the Subbasin and under PID. Descriptions of these geologic formations are provided below and are depicted in **Figures 2-11 and 2-12**.

Unconsolidated Continental Deposits

Sediment consisting of fluvial (i.e. streambed deposits), alluvial, flood plain, and lacustrine (i.e. lakebed) deposits. Within the PID GSA, the deposits are estimated to be up to approximately 1,200 ft (Thomas Harder & Co., 2022; 2024b). Subsurface alluvial sediments consist of highly stratified layers of sand and gravel (relatively high permeability) interbedded with silt and clay (lower permeability). Correlation of individual sand and clay layers that extend laterally across the Subbasin can be unclear due to the interbedded nature of the sediments.

The unconsolidated continental deposits form the primary groundwater reservoir in the Subbasin, and they range in age from recent near-surface stream channels to Upper Pliocene (approximately 2.6 mya) at depth. East of the PID GSA and the Subbasin, Pleistocene sediments (2.6 million to 11,700 years before present) crop out at the land surface along the base of the Sierra Nevada Mountains, forming the dissected uplands (Lofgren and Klausing, 1969). The older continental deposits are semi-consolidated and contain a high percentage of clay; Therefore, they typically do not yield significant water to wells.

The lowermost portion of unconsolidated continental deposits is correlated with the Tulare Formation, which includes the Corcoran Clay confining layer, also referred to as the *E-Clay* (Frink and Kues, 1954), which is located west of the PID GSA area. The Corcoran Clay consists of a Pleistocene diatomaceous fine-grained lacustrine deposit (primarily clay; Faunt, 2009). In the Subbasin, the Corcoran Clay is 150 ft

thick at its maximum beneath the Tulare Lake, becomes progressively thinner to the east, and it pinches out on the east side of Highway 99 (Lofgren and Klausing, 1969).

Pliocene Marine Deposits

Consolidated to loosely consolidated marine siltstone with minor interbedded sandstone beds that underlie the continental deposits. The marine siltstone unit ranges in thickness from approximately 250 ft along the eastern region of the PID GSA to greater than 500 ft at its western boundary (Lofgren and Klausing, 1969; Thomas Harder & Co., 2022). The marine siltstone beds dip sharply from the base of the Sierra Nevada Mountains on the east to the central region of the valley in the west. The Pliocene marine strata do not yield significant water to wells due to its relatively low permeability.

Santa Margarita Formation

This formation underlies the Pliocene marine strata and consists of Miocene (approximately 5.3 to 23 million years before present) sand and gravel that is relatively permeable and yields water to wells. Within the PID GSA, the formation is approximately 250 to 650 feet thick, and its depth beneath the GSA ranges from 1,000 feet near State Highway 65 to approximately 2,500 ft beneath the western boundary of the GSA.

Tertiary Sedimentary Deposits

An interbedded assemblage of semi-consolidated to consolidated sandstone, siltstone and claystone of Tertiary age (approximately 2.6 to 66 million years before present) that underlie the Santa Margarita Formation. Some irrigation wells in the southeastern region of the Tule Subbasin produce fresh water sourced by the Olcese Sand Formation within this formation (Ken Schmidt, 2019). Most of the groundwater in the unit is not usable for crop irrigation or municipal supply, except near Highway 65, due to increased salinity to the southwest.

Granitic Crystalline Basement

Basement rock consisting of Mesozoic granitic rocks that compose the Sierra Nevada batholith (Faunt, 2009) and are assumed to be relatively impermeable.

2.2.4. Lateral Basin Boundary

The lateral basin boundaries for the Subbasin, including natural and political boundaries, are described in DWR Bulletin 118 (DWR, 2016). To the north of the Tule is the Kaweah Subbasin, to the west is the Tulare Lake Subbasin, and to the south is the Kern County Subbasin. To the east of the Subbasin is the Sierra Nevada Mountain Range which is outside of the San Joaquin Valley Groundwater Basin (**Figure 2-1**).

For the PID GSA, all boundaries are jurisdictional which include the City of Porterville to the east, LTRID to the west, the Kaweah subbasin to the north, and portions of Tule East and LTRID GSA to the south (**Figure 2-2**).

2.2.5. Bottom of Basin

The bottom of the Tule Subbasin and the PID GSA is defined by the interface between the Tertiary sedimentary deposits and the underlying, relatively impermeable granitic basement rock (Thomas Harder & Co., 2022; 2024a) (**Figures 2-11 and 2-12**). The depth of this interface is approximately 2,000 ft bgs beneath the eastern boundary of the GSA and Highway 65 and increases westward to greater than 2,500 ft (Thomas Harder & Co., 2022, 2024b).

The interface between freshwater and brackish water is thought to occur at depths ranging from less than 1,200 ft bgs in the northeastern region of the Tule Subbasin near the PID GSA area to greater than 2,500 ft bgs near the Tulare/Kern County line (south of the PID GSA). Groundwater quality parameters determine the efficacy of a fresh groundwater basin and determine if it is suitable for municipal, irrigation, or other uses. For example, a measure of the bottom of the basin is determined by an electrical conductivity of 3,000 micromhos per centimeter ($\mu\text{mhos}/\text{cm}$), which is approximately correlative to a total dissolved solids (TDS) concentration of 2,000 milligrams per liter (mg/L) (Thomas Harder & Co., 2024b). Aquifer groundwater quality of the PID GSA is discussed in greater detail in Section 2.3.8 of this GSP.

2.2.6. Principal Aquifers and Aquitards

2.2.6.1 Aquifer Formations

Five aquifer formations have been identified within the subsurface of the Subbasin. These layers include the Upper Aquifer, Corcoran Clay, the Lower Aquifer, Pliocene Marine Deposits, and the Santa Margarita. All but the Corcoran Clay are present with PID GSA (**Figures 2-11 and 2-12**). A summary of the four aquifer/aquitard units that are present in PID, as well as their approximate thicknesses, is described below. Descriptions are based on information presented in (Thomas Harder & Co., 2022; 2024b).

1. **Upper Aquifer** – An unconfined to semi-confined aquifer occurring throughout the entire Subbasin, shallowing from west to east. The Upper Aquifer is generally considered unsaturated near the southern region of the Subbasin, with local areas of groundwater. Within the PID GSA, the Upper Aquifer is located within the upper 150 ft of sediment, increasing to approximately 200 ft near the western boundary.
2. **Lower Aquifer** – Confined beneath the Corcoran Clay, where it is present (west of Highway 99), and conceptualized to be semi-confined in the northeastern portion of the Subbasin. The Lower Aquifer is separated from the underlying Santa Margarita Formation Aquifer by a thick layer of Pliocene Marine Deposits. In the eastern region of the GSA, the Lower Aquifer has an estimated thickness of approximately 500 ft bgs and increases in depth westward to approximately 1,000 ft bgs near the western boundary of the GSA.
3. **Pliocene Marine Deposits** – A layer of marine deposits (confining unit) in the southeastern portion of the Subbasin that separates the Lower Aquifer from the underlying Santa Margarita Aquifer. Due to its low permeability, the Pliocene marine deposits do not yield significant water to wells. The confining marine deposits are between 500 ft to 1,600 ft thick throughout the Subbasin.

4. **Santa Margarita Formation and Olcese Formation** – Tertiary sedimentary deposits occurring at depths greater than 2,000 ft, forming a localized aquifer in the southeastern portion of the Subbasin. The aquifer underlies the Pliocene Marine Deposits and is conceptualized as hydrologically disconnected from the rest of the identified aquifers in the Subbasin. It is relatively permeable and is a major water source for agricultural irrigation.

2.2.6.2 Aquifer Physical Properties

The principal water-bearing aquifers of the Subbasin are formed from permeable sand and gravel layers that are interbedded with low-permeability silt and clay lenses. Shallower saturated sediments are generally unconfined to semi-confined, while confined aquifers in the western region of the basin occur beneath the Corcoran Clay, west of the PID GSA. The ability of aquifer sediments to transmit and store water is based on the aquifer's transmissivity, hydraulic conductivity, and storativity. Aquifer parameters were derived using short-term pump tests and long-term pump tests (24 hours or more at a constant rate).

Transmissivity/Hydraulic Conductivity

Transmissivity is a measure of the ability of groundwater to flow within an aquifer. It is defined as the rate of groundwater flow through a unit width of an aquifer under a unit hydraulic gradient (Fetter, 1994), and it was estimated from short-term pumping test data based on Theis et al. (1963) and the following relationship:

$$T = \frac{S_c \times 2,000}{E}$$

Where:

T = Transmissivity (gpd/ft);
S_c = Specific Capacity (gpm/ft);
E = Well Efficiency (assumed to be 0.7)

The transmissivity values at individual wells within the Subbasin were converted into hydraulic conductivity (i.e. aquifer permeability) by dividing by the aquifer thickness using the perforation interval of the well.

Horizontal hydraulic conductivity for the Upper Aquifer ranges from 10-20 ft/day in the southeastern region of the Porterville GSA up to 60-80 ft/day in the northeastern and central regions of the GSA (**Figure 2-13**). Whereas horizontal hydraulic conductivity in the Lower Aquifer range from less than 10 ft/day in the northwest region of the PID GSA to 20-40 ft/day in the eastern region of the GSA (**Figure 2-14**). Higher hydraulic conductivity values in the northern region of the PID GSA indicate that the sediments are more permeable than in the southern region, which derived lower conductivity values.

Additional details on hydraulic conductivity in the region are described in Chapter 2.1.7.2 of the Tule Subbasin Setting.

Specific Yield/Storativity

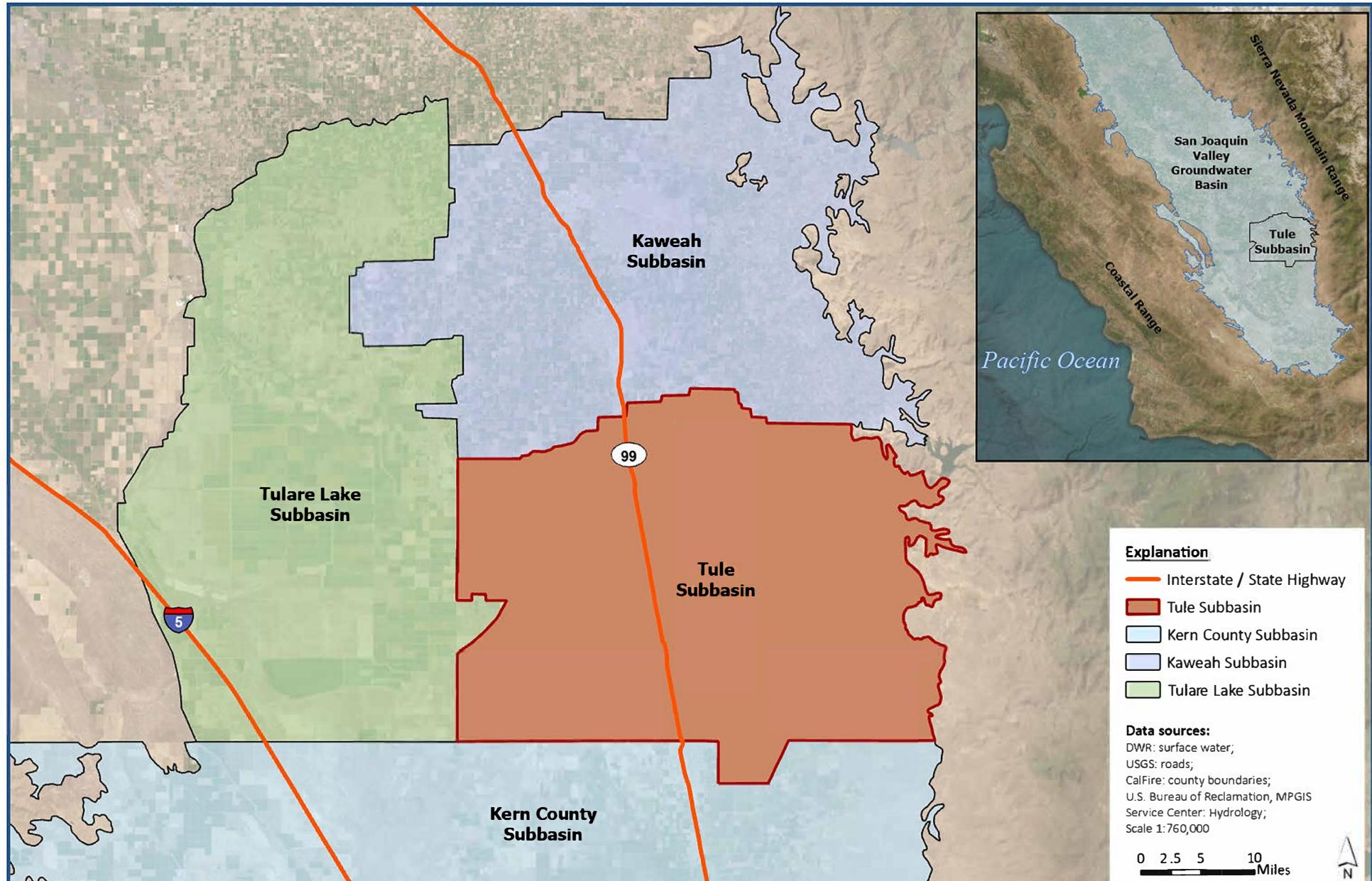
Specific yield refers to the ratio of the volume of water that sediment will yield by gravity drainage to the volume of the sediment. The majority of the Upper Aquifer is characterized as unconfined; therefore, its storage properties are expressed in terms of specific yield, and its values were assigned based on a USGS texture analysis published in Faunt (2009). Textural descriptions of sediment in terms of coarse-grain percentages were based on drillers' logs generated from boreholes or wells drilled within or immediately outside the Subbasin. Higher percent coarse-grained sediment is directly proportionate to higher specific yields. Across the Subbasin, specific yield values range from 0.001 in the western portions of the subbasin, to as high as 0.25 in the areas where the FKC intersects the White River. Within PID GSA in the Upper Aquifer, specific yield values range from approximately 0.001 to 0.05 in the southeastern region of the GSA near Tule River, and >0.25 in the northwestern region (**Figure 2-15**).

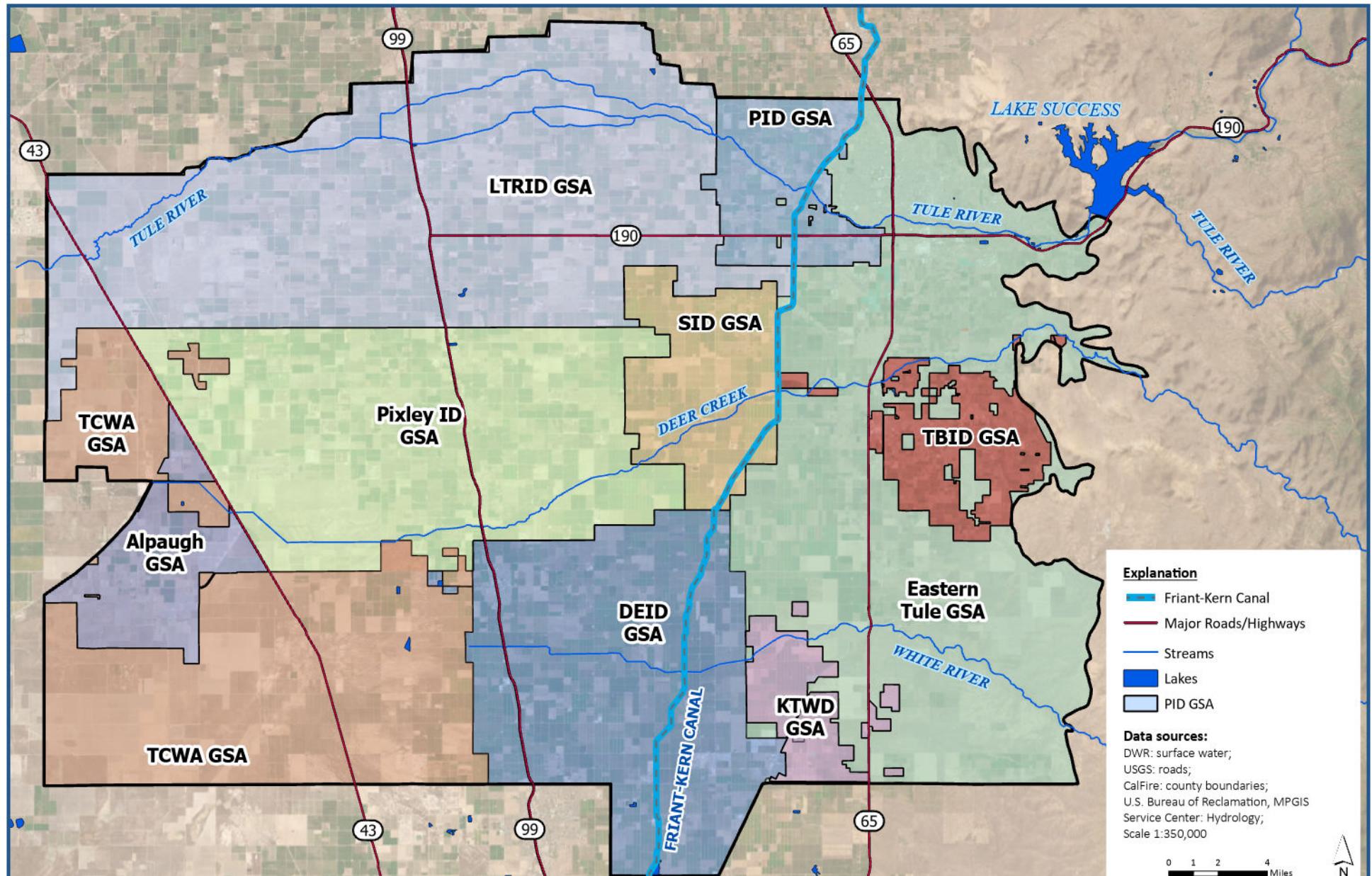
The Lower Aquifer in the Subbasin is confined to semi-confined; therefore, its storage properties are expressed in terms of storativity. Storativity is a measure of the volume of water that an aquifer can release from, or take into, storage per unit of aquifer surface area per unit change in hydraulic head. Storativity is based on long-term pumping tests, during which pumping interference is measured in a monitoring well located a known distance from the pumping well. Pumping interference data for the Tule Subbasin were not available. Therefore, storativity values for the lower alluvial aquifer were originally based on values published in Faunt (2009) and were modified during calibration of the Subbasin's numerical model. Storativity values in the Lower Aquifer under confined conditions range from 8.0e-06 to 3.6e-04, which are indicative of confined aquifer conditions. The storativity values tend to increase from east to west. Within PID, storativity values are estimated to be between 8.0e-06 and 3.6e-04 (**Figure 2-16**).

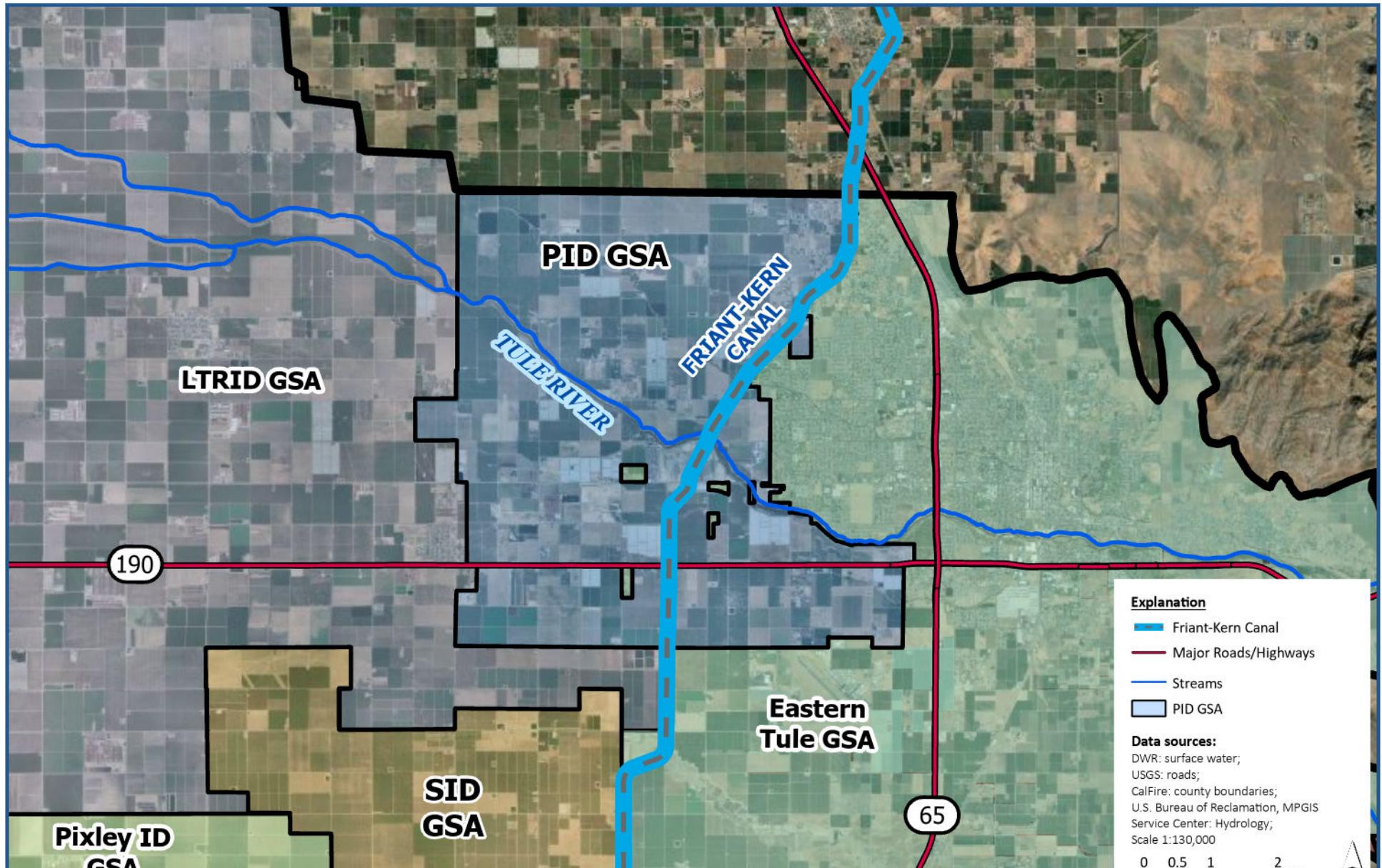
2.2.7. Geologic Structures that Affect Groundwater Flow

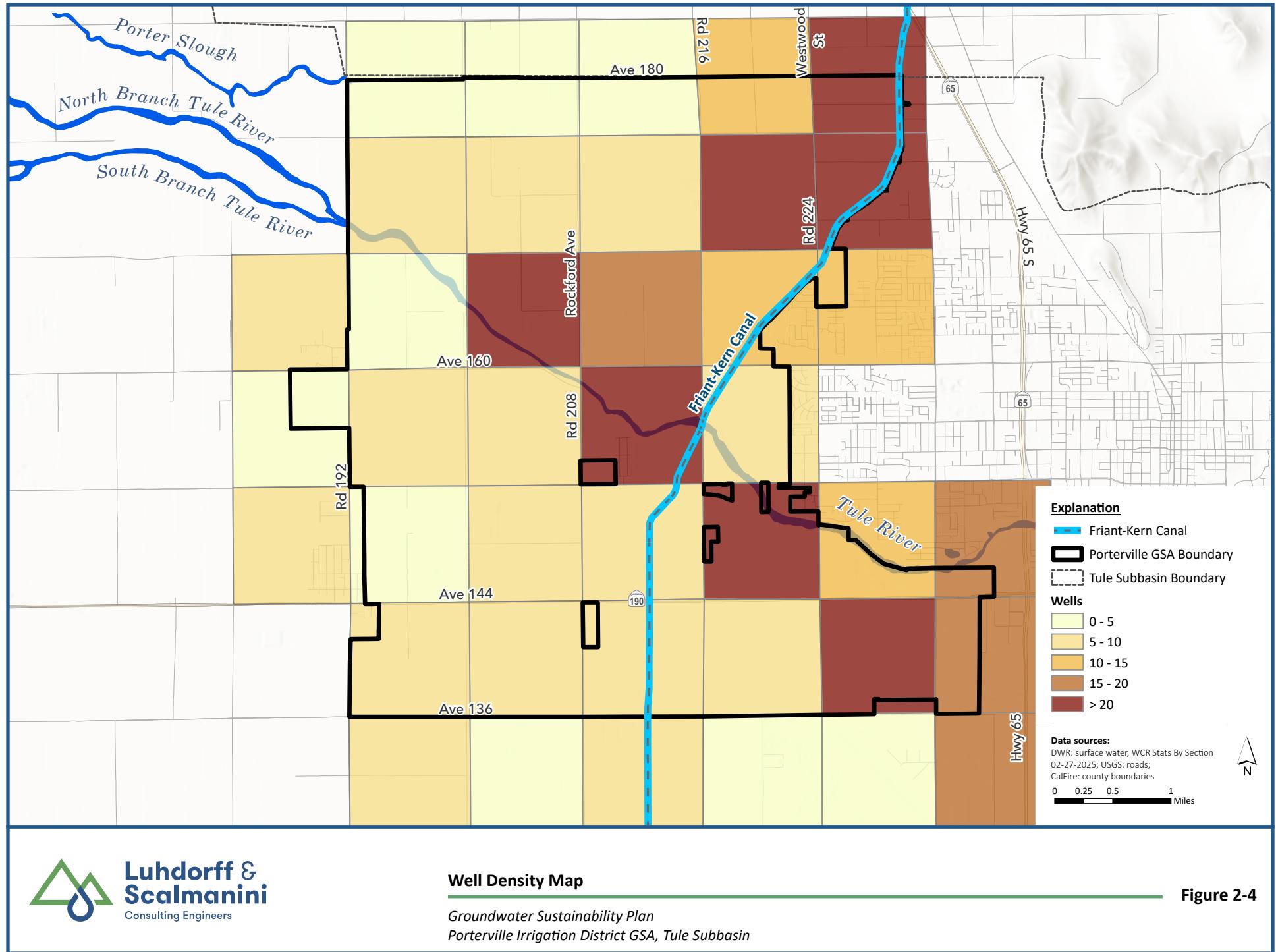
Across the Subbasin, the Corcoran Clay confining unit is the most significant geologic feature that affects groundwater flow. The unit is not within PID, though localized confining beds may be present. Groundwater flow within the PID is described in Section 2.5.1.

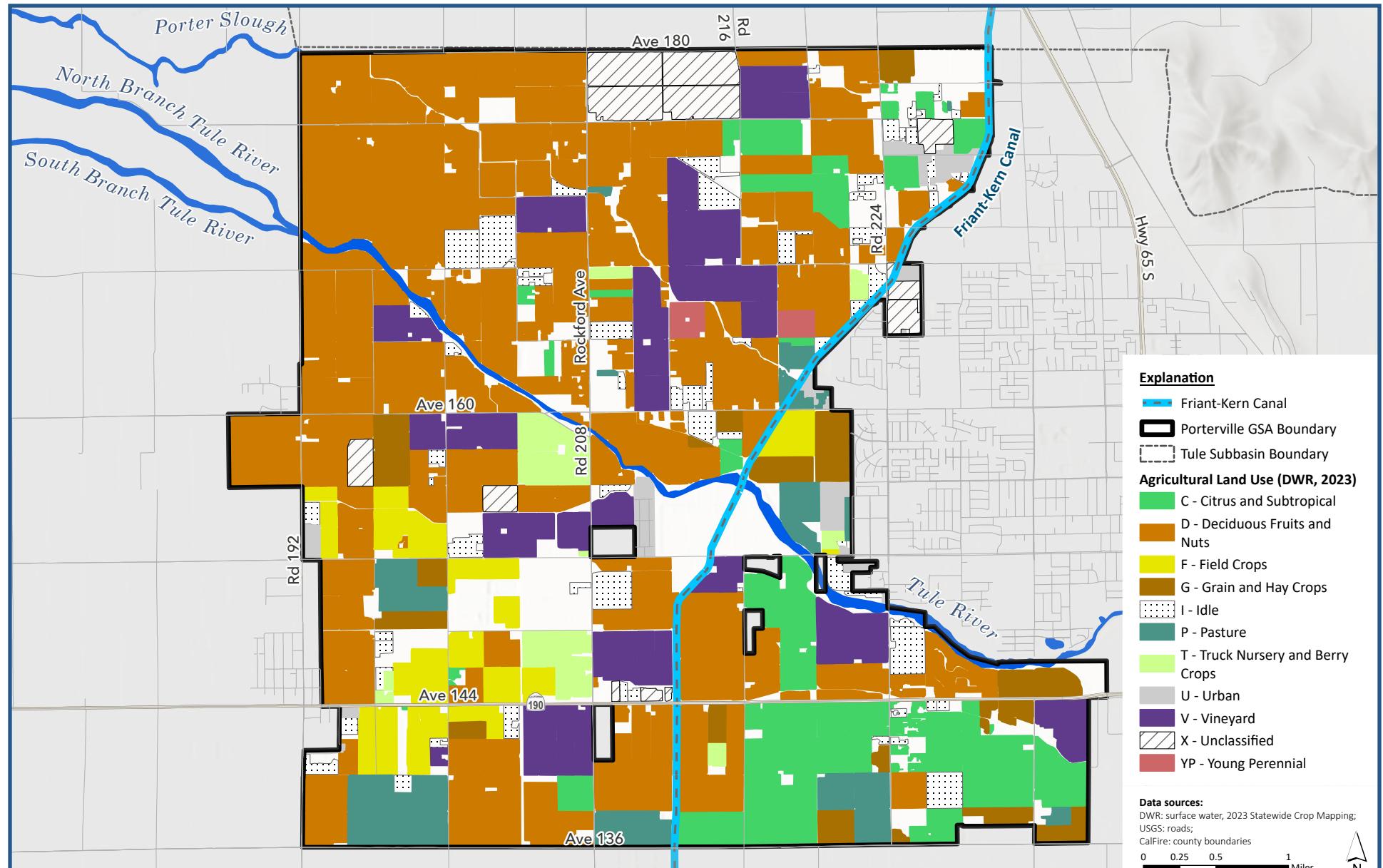
No significant faults have been mapped within the PID GSA that would affect groundwater flow. A concealed fault is present in the northeastern corner of the Subbasin (**Figure 2-10**).

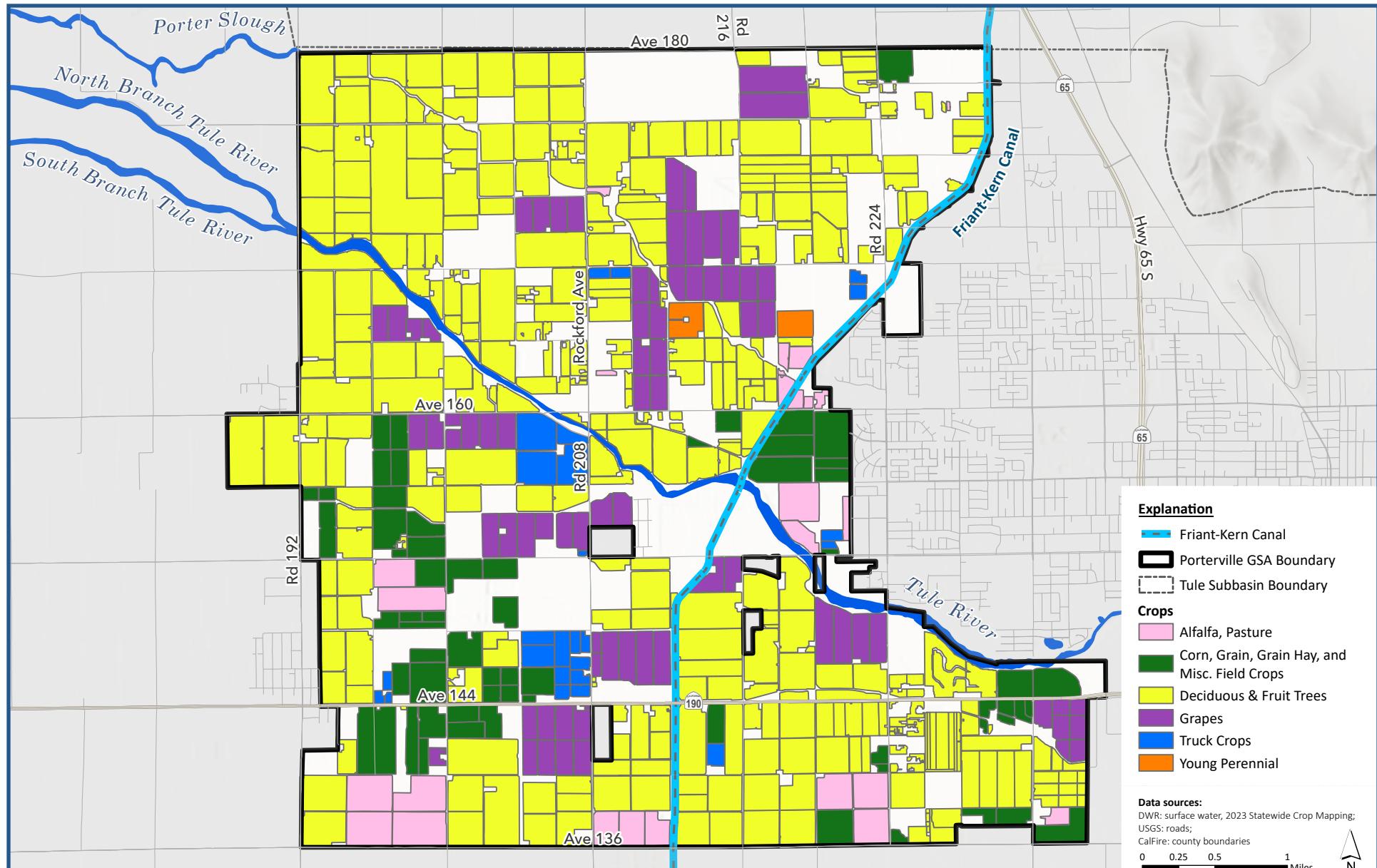

2.2.8. Areas of Groundwater Recharge and Discharge

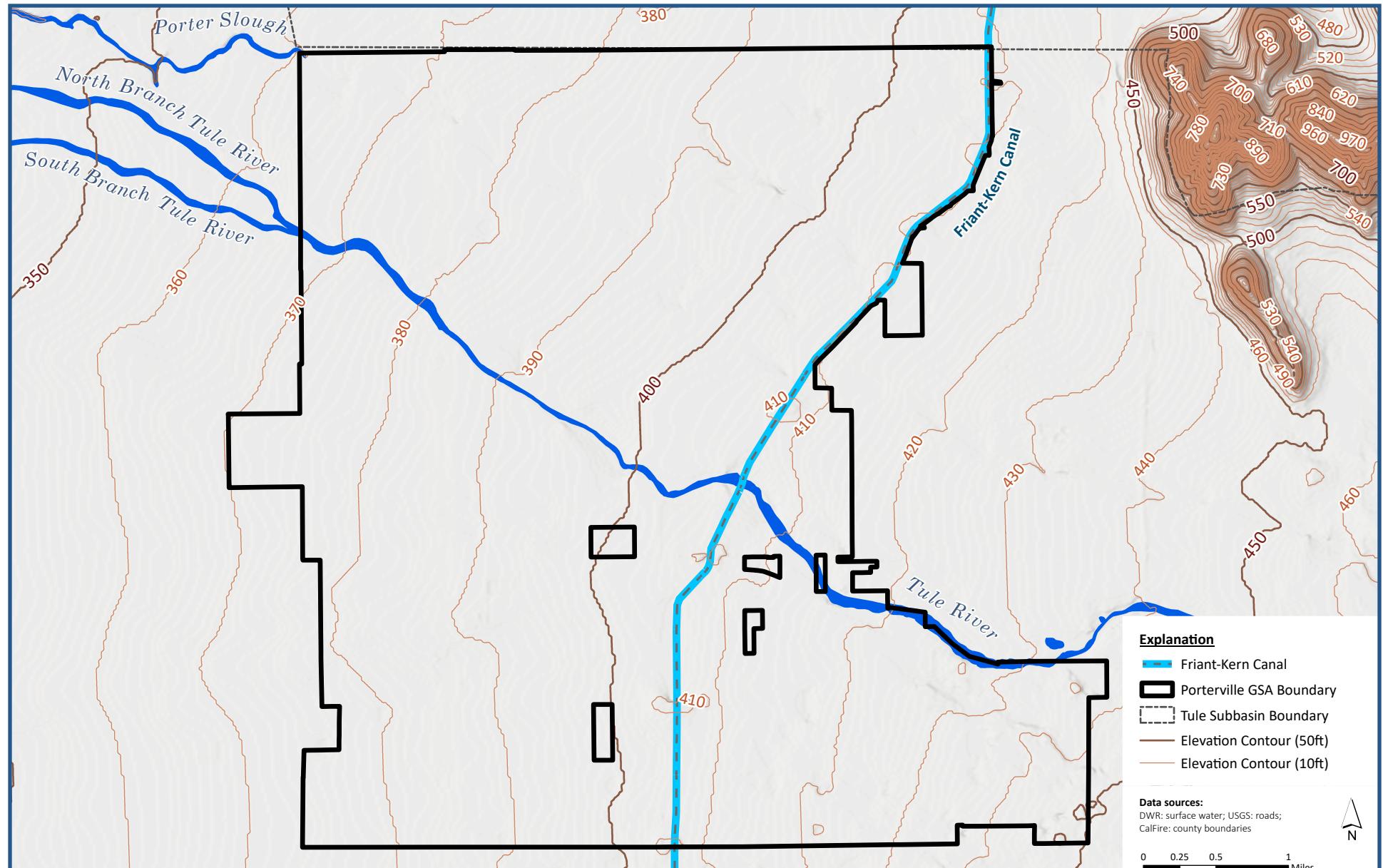

Groundwater recharge occurs primarily through deep percolation of surface water flow and infiltration of applied irrigation water. Deep percolation can occur over relatively permeable surface soils when there is a lack of subsurface impediments. As described in Section 2.2.2, greater recharge is likely to occur in the Tagus and Nord Loams due to their high vertical permeability and lack of duripan. Areas of recharge within the Subbasin are identified for the Subbasin in Chapter 2.1.6 of the *Subbasin Setting*, and generally occur along or within stream channels, unlined canals, in managed recharge basins, and on irrigated agricultural lands. Within PID, areas suitable for recharge occur throughout the central portion of the GSA and in areas along the Tule River.

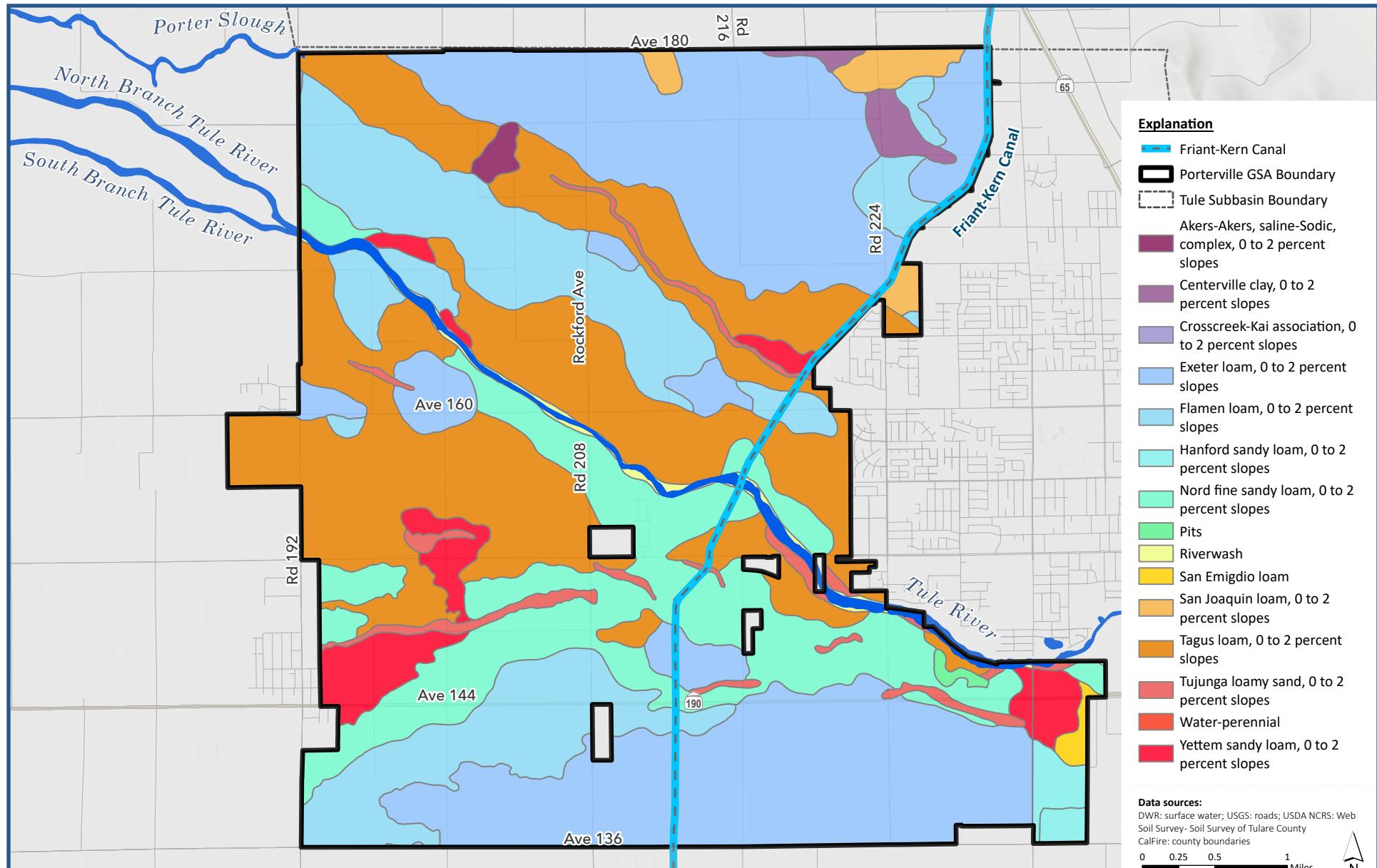

The Soil Agricultural Groundwater Banking Index (SAGBI) was developed by the University of California Davis and identifies effective areas of recharge based on deep percolation potential, root zone residence time, topography, chemical limitations, and soil surface conditions. The SAGBI is intended to provide a preliminary indicator of potential recharge and where enhanced recharge could be implemented. SAGBI may not represent the complete view of recharge potential and additional geotechnical studies should be conducted prior to the implementation of recharge projects. Classifications of potential recharge in the SAGBI include Very Poor; Poor; Moderately Poor; Moderately Good; Good; and Excellent, in order of increasing recharge potential.

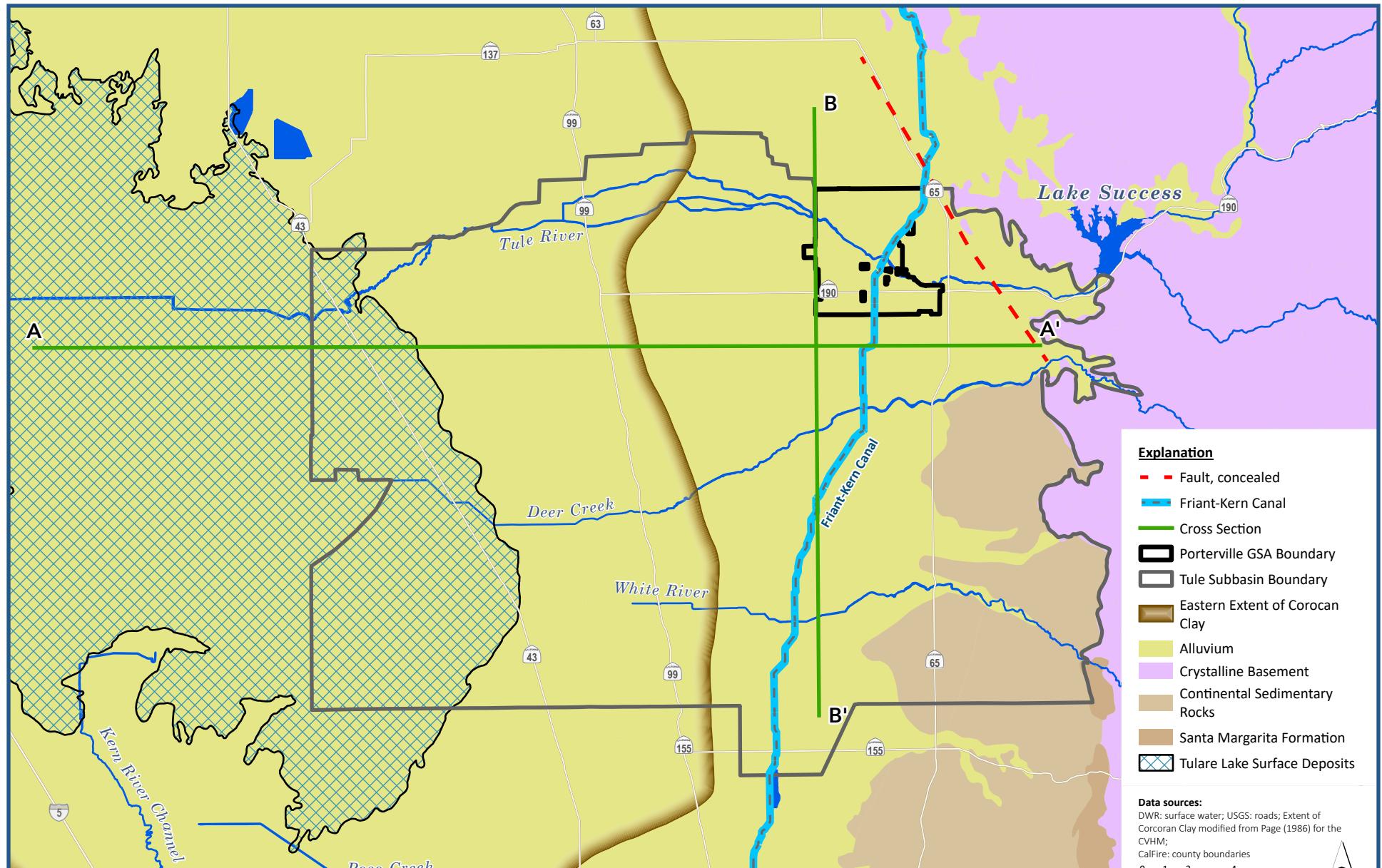

Figure 2-17 contains the SAGBI rating of potential recharge within the PID GSA without consideration for soil modifications, such as deep tillage, that may have occurred historically or could potentially occur. Based on the SAGBI Index, PID generally consists of soils that are “poor” for groundwater recharge. Areas of high recharge potential are in the central portion of the GSA, extending diagonally to the northwest from the east, following the Tule River.

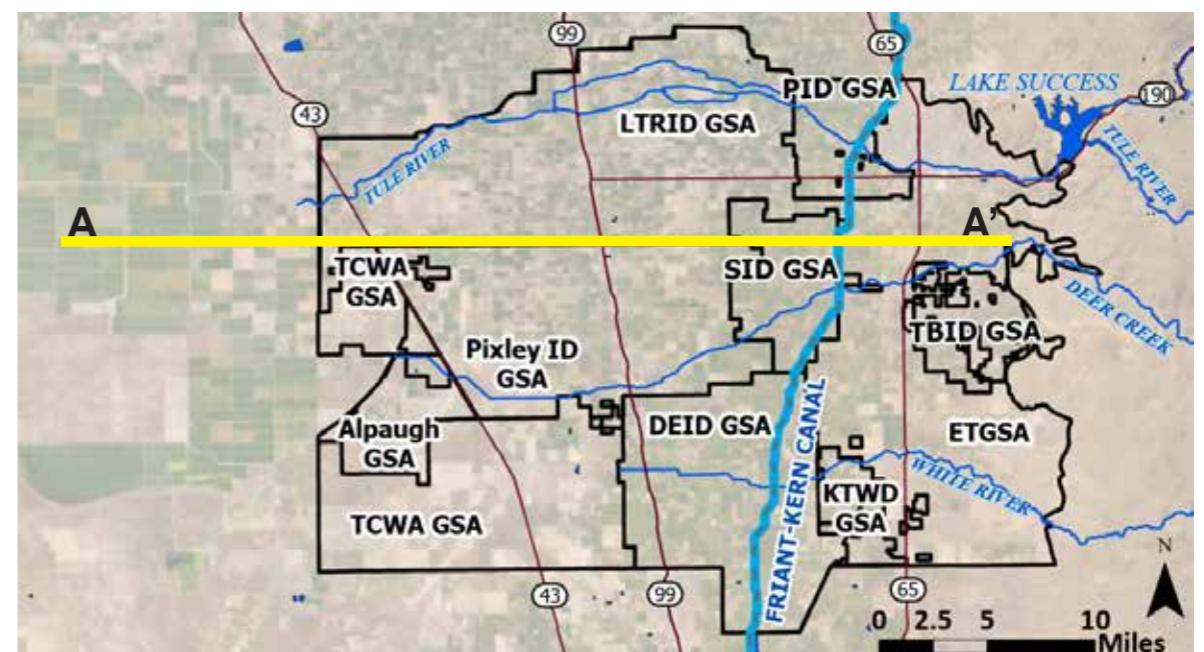
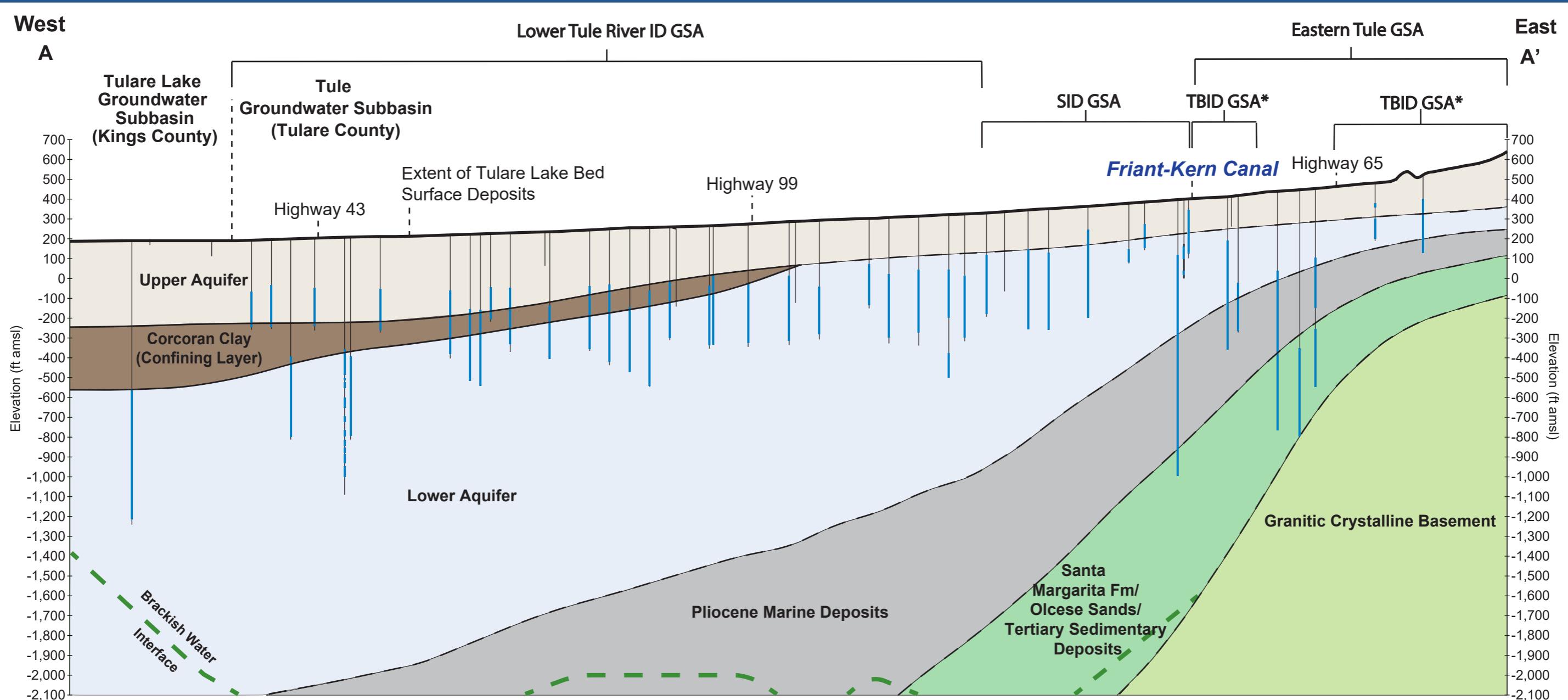

Groundwater discharge within PID occurs through groundwater pumping and baseflow contributions to surface water systems (Tule River). No springs or wetlands are present within PID.

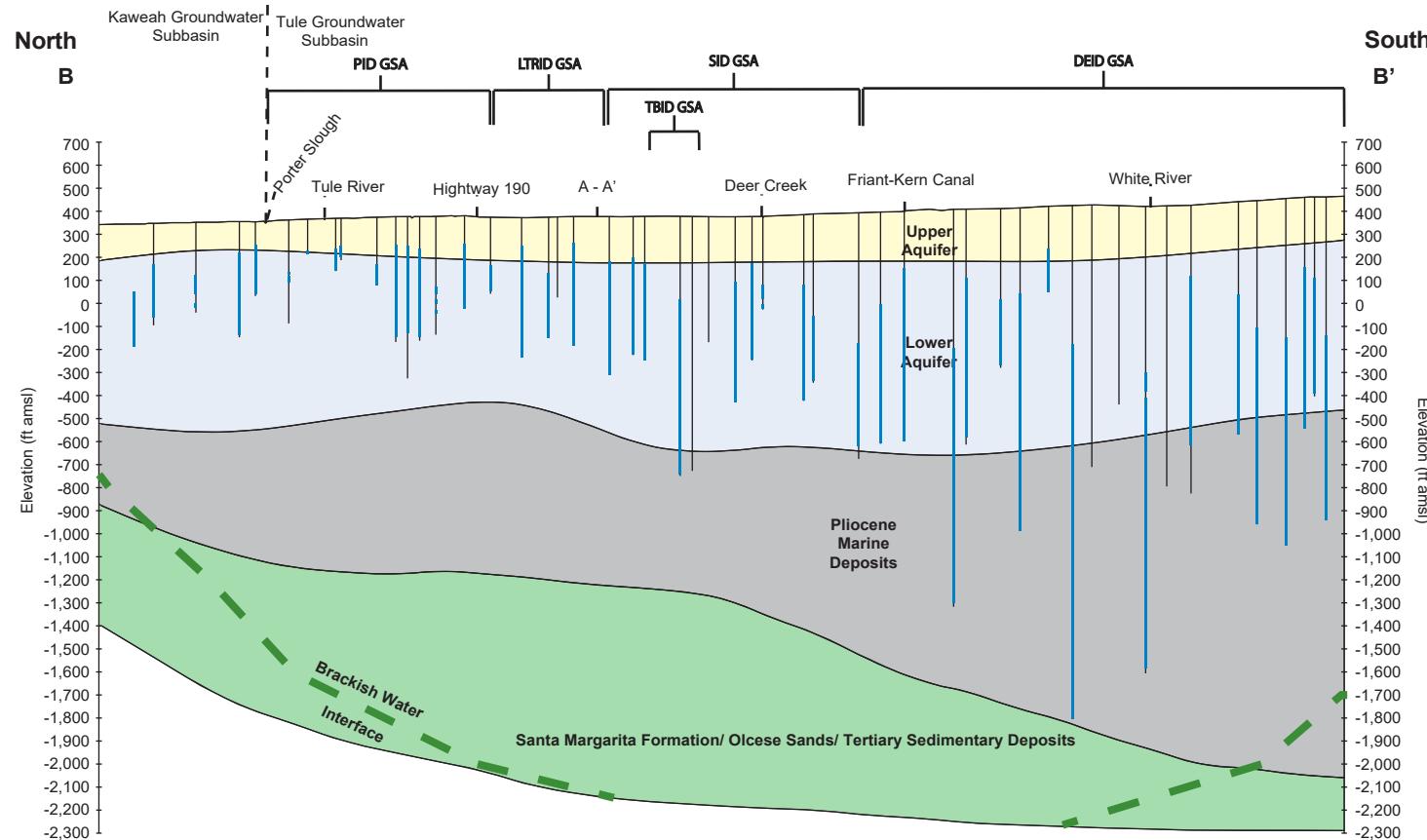






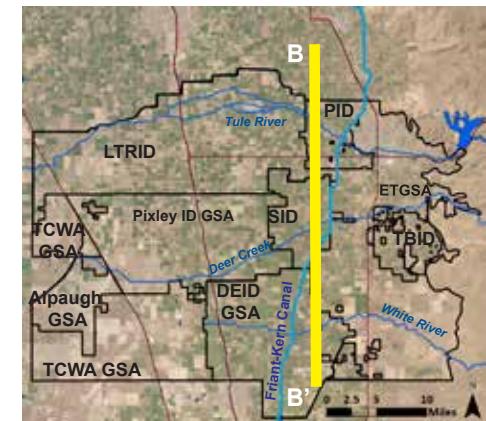


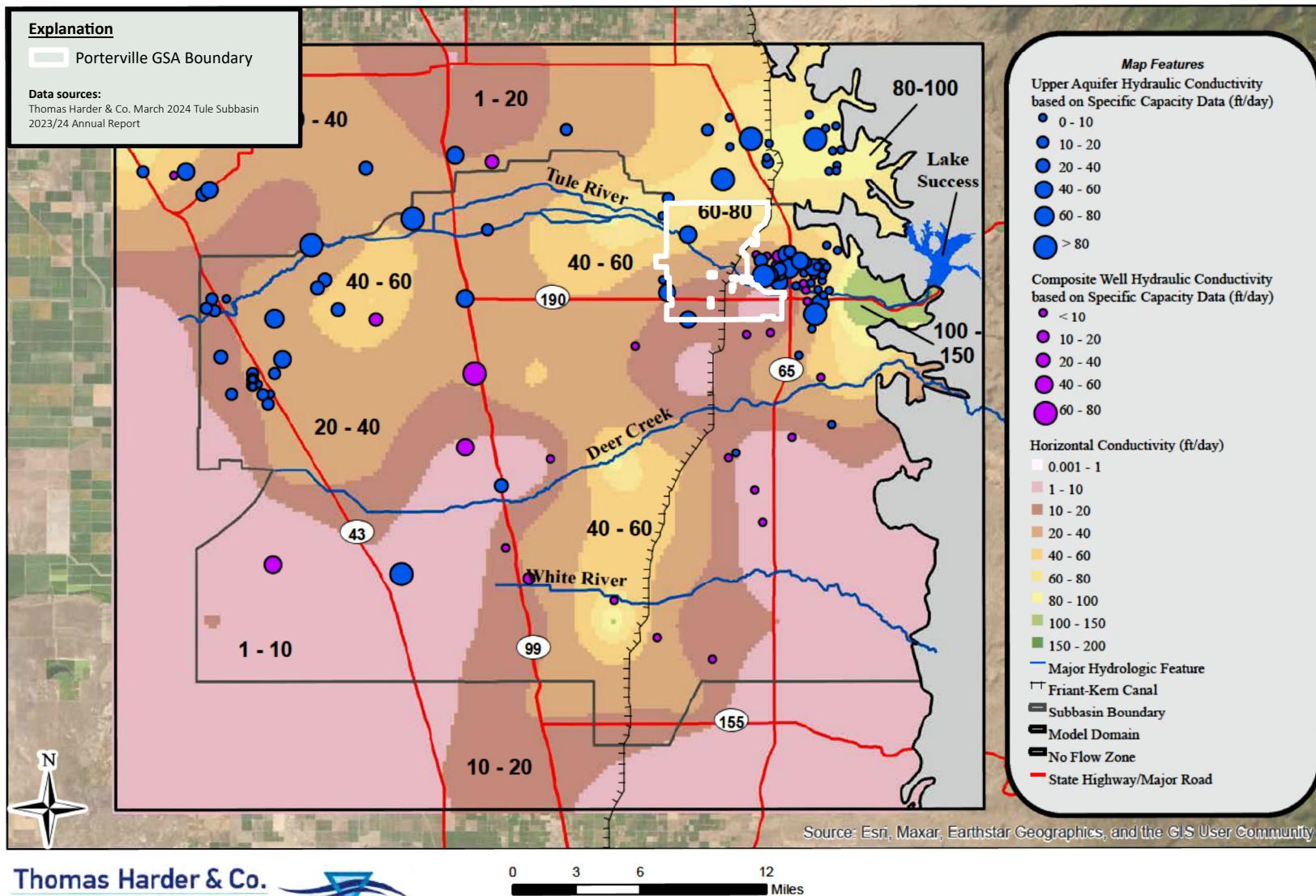


West

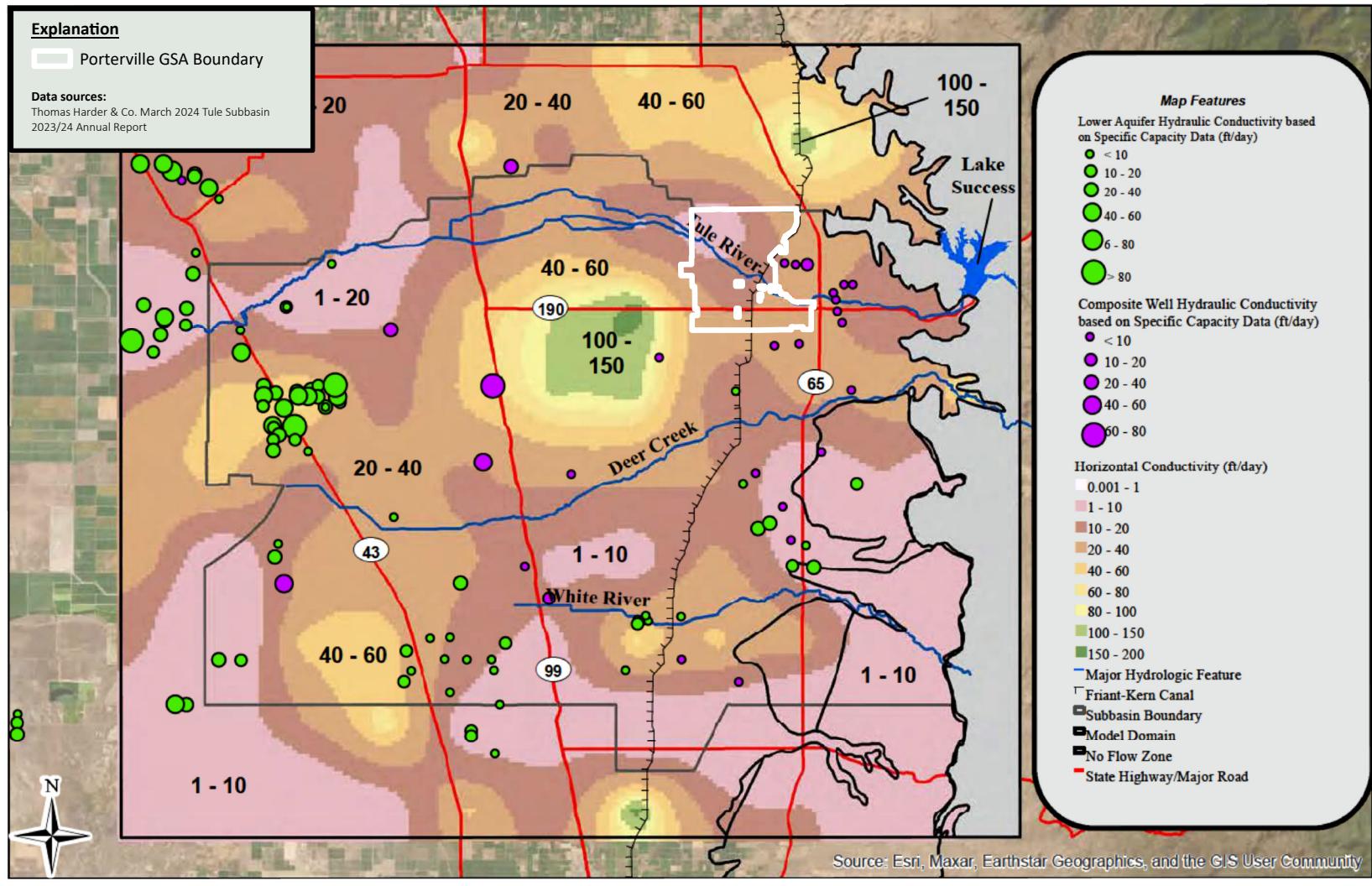
A

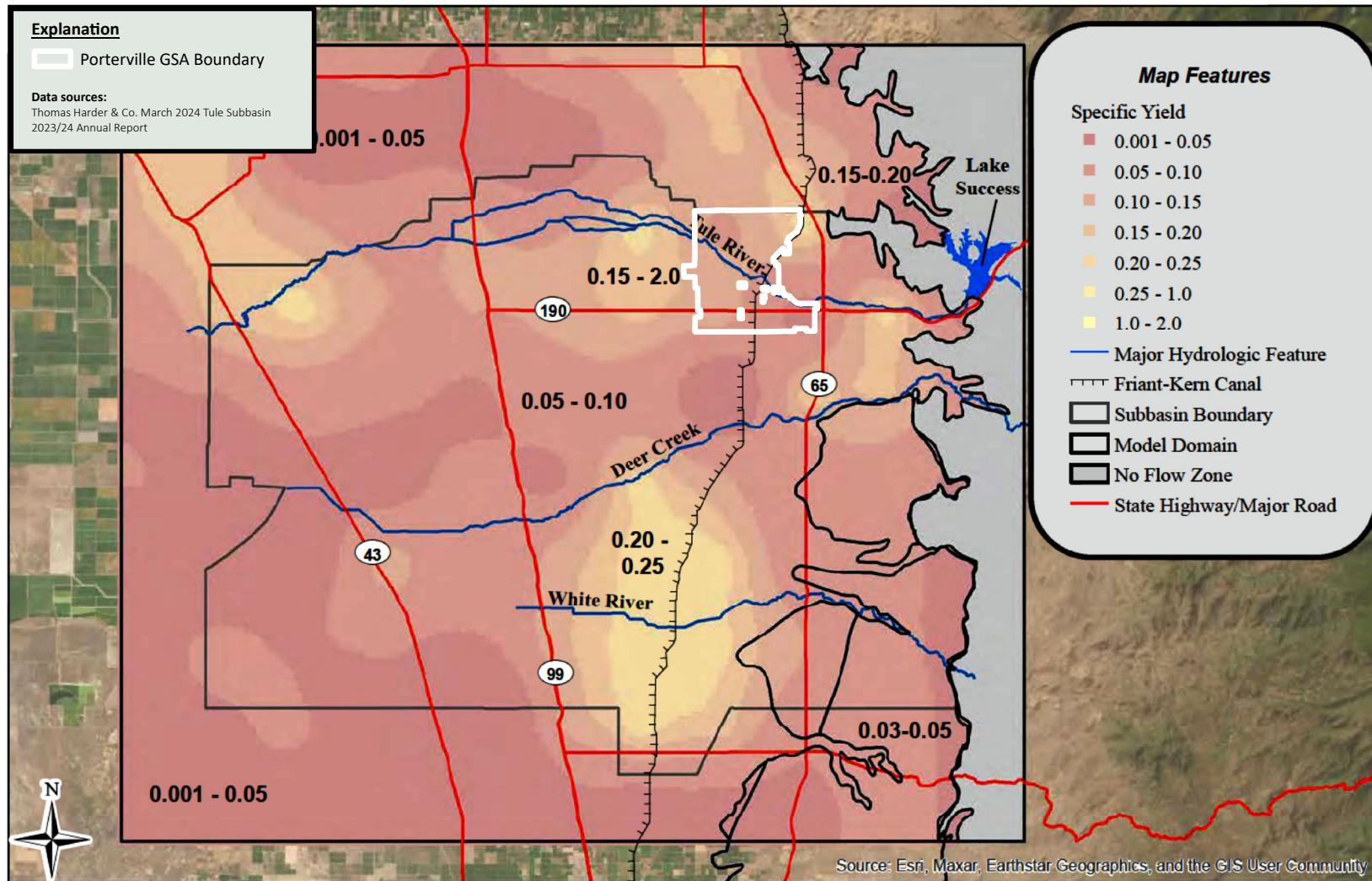


Notes: Modified cross-section from Thomas Harder & Co. (2024)
 Lithologic data from Department of Water Resources Well Completion Reports.
 Wells are located within one half mile of cross-section line.
 Corcoran Clay from USGS Professional Paper 1766,
http://water.usgs.gov/GIS/dsdl/pp1766_CorcoranClay.zip


Brackish Water Interface based on Planert and Williams, 1995 and Page,
 1973 USGS Atlas HA-489

= Well perforation interval
 = B - B' cross-section line
 Fm = Formation


Vertical Scale
 0 100 200 400
 Feet
 Horizontal Scale
 0 1/2 1 2 Miles

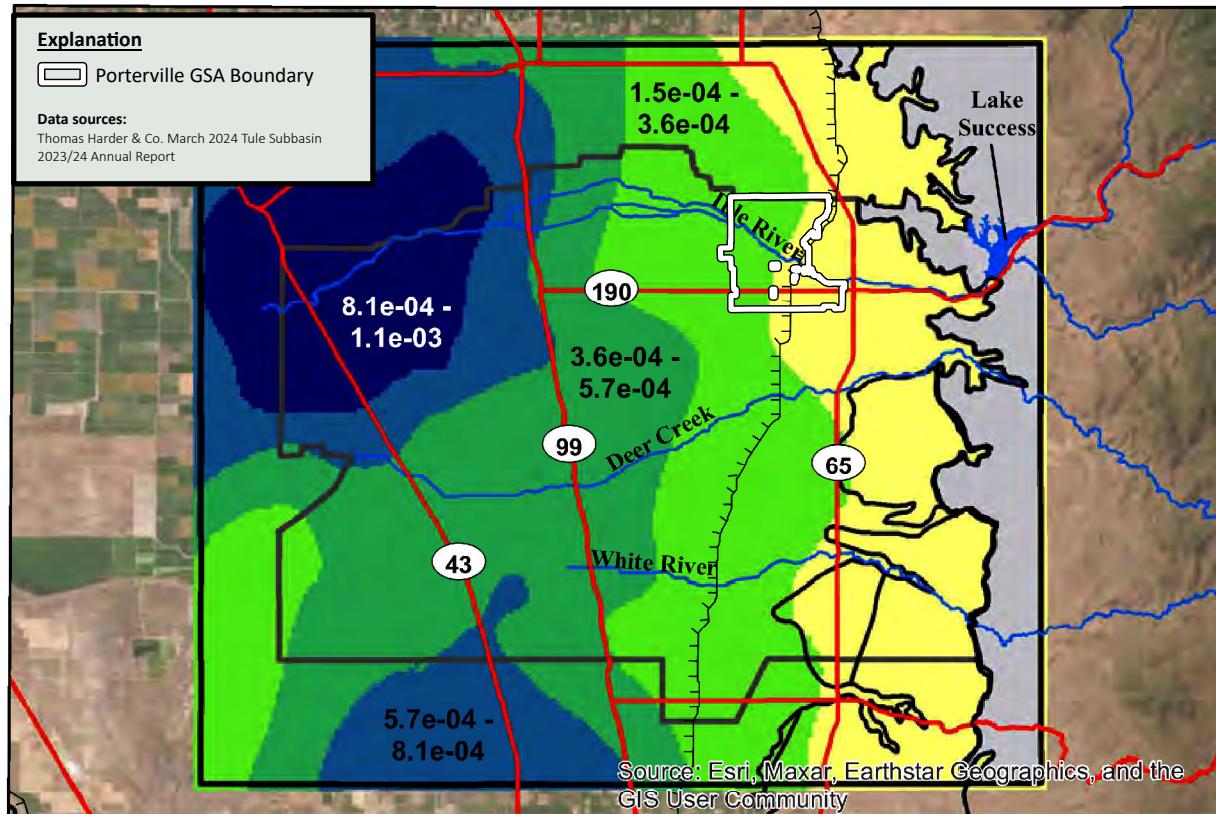

Tule Subbasin Technical Advisory Committee
2023/2024 Annual Report

Tule Subbasin Technical Advisory Committee
2023/2024 Annual Report

Tule Subbasin Technical Advisory Committee
2023/2024 Annual Report

Thomas Harder & Co.
 Groundwater Consulting

0 3 6 12
 Miles
 NAD 83 State Plane Zone 4



**Luhdorff &
 Scalmanini**
 Consulting Engineers

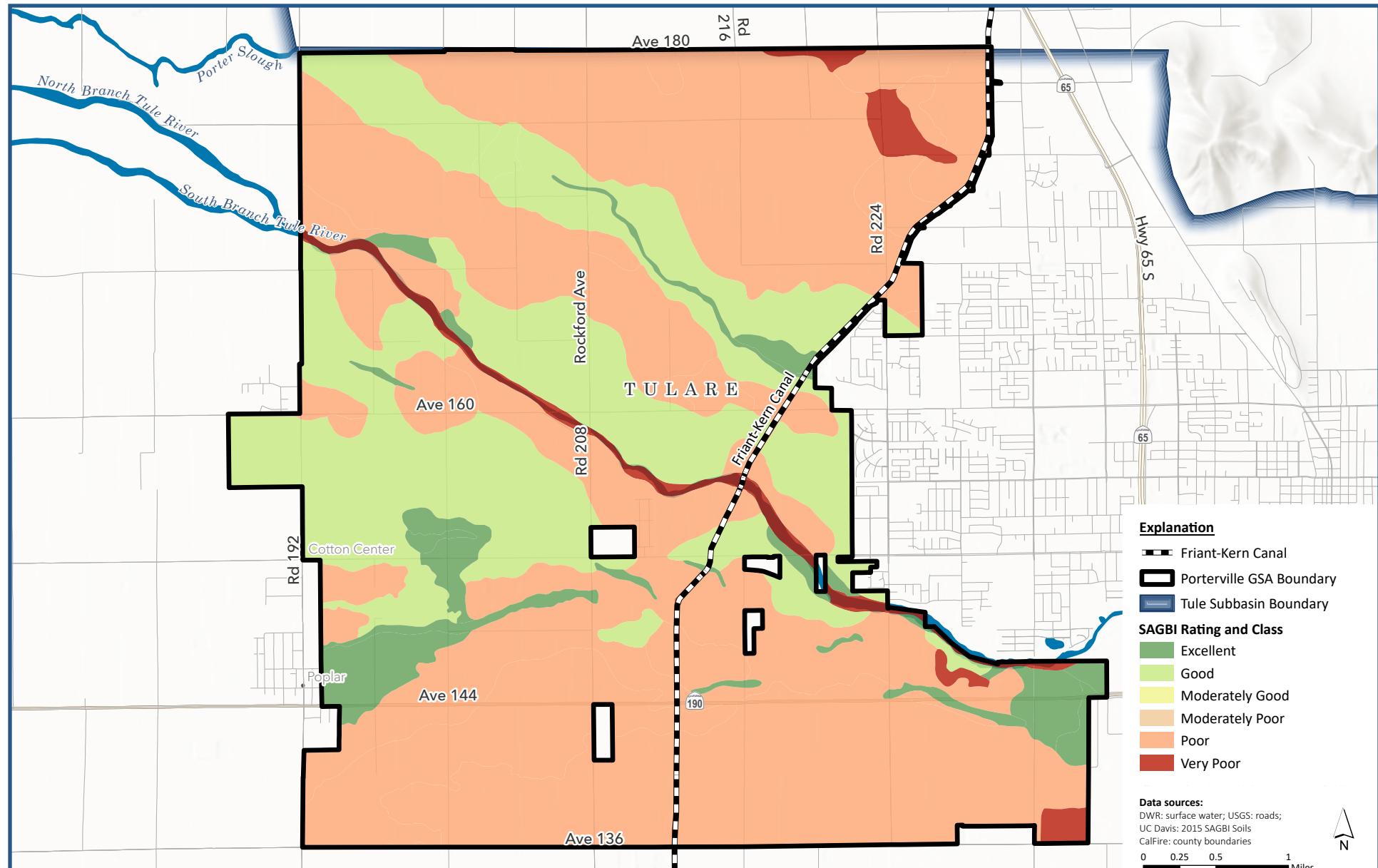
Lower Aquifer Horizontal Hydraulic Conductivity

*Groundwater Sustainability Plan
 Porterville Irrigation District GSA, Tule Subbasin*

Figure 2-15

Tule Subbasin Technical Advisory Committee
2023/2024 Annual Report

Thomas Harder & Co.
Groundwater Consulting



Lower Aquifer Storage Properties: Storativity

Groundwater Sustainability Plan
Porterville Irrigation District GSA, Tule Subbasin

 Luhdorff &
Scalmanini
Consulting Engineers

Figure 2-16b

Agenda Item 5.b

CONSENT CALENDAR

Staff Report to the Porterville Irrigation District GSA Stakeholder Committee

Subject: POLICY DISCUSSION / Committee discussion on the Draft PID GSA Water Budget.

Submitted By: General Manager

The Groundwater Sustainability Act (SGMA) requires each Groundwater Sustainability Agency (GSA) to understand, quantify, and manage the balance between water entering and leaving its groundwater system. A central tool for evaluating this balance is the Water Budget.

The Porterville Irrigation District (PID) GSA Water Budget is derived from the Tule Subbasin Groundwater Flow Model and evaluates historical conditions from Water Year (WY) 1987 through WY 2024, as well as projected conditions through 2070. The Water Budget supports SGMA compliance by:

- Quantifying groundwater and surface water inflows and outflows;
- Evaluating long-term trends in groundwater storage;
- Informing sustainable yield and groundwater allocation decisions; and
- Assessing the effectiveness of management actions and recharge efforts.

This staff report summarizes key Water Budget concepts and findings to support stakeholder understanding and discussion.

DISCUSSION

What Is the Water Budget?

The Water Budget is an accounting framework that tracks all water entering (inflows) and leaving (outflows) the PID GSA boundary over time. It is divided into two interconnected components:

- Surface Water Budget - Tracks precipitation, river flows, imported water, diversions, recharge, and evapotranspiration.
- Groundwater Budget - Tracks recharge to groundwater, pumping, subsurface flows, and changes in groundwater storage.

Together, these budgets describe how water moves through the system and whether groundwater use is sustainable over the long term.

Surface Water Budget - Key Components

Surface Water Inflows

Major inflows to PID include:

- Precipitation over the District;
- Tule River flows, primarily controlled by releases from Lake Success;
- Imported surface water, including Friant-Kern Canal supplies and Tule River entitlements; and
- Groundwater pumping applied to crops, which enters the surface system as irrigation supply.

Over the historical period, precipitation within PID averaged approximately 13,500 acre-feet per year, while surface water deliveries averaged approximately 15,400 acre-feet per year, with significant year-to-year variability.

Surface Water Outflows

Surface water leaves the system through:

- Evapotranspiration (ET) from crops and native vegetation;
- Deep percolation, which becomes groundwater recharge;
- Streambed infiltration along the Tule River;
- Canal losses from conveyance systems; and
- Surface water outflow continuing downstream.

These outflows illustrate how surface water use directly supports groundwater recharge and long-term basin sustainability.

Groundwater Budget - Key Components

Groundwater Inflows

Groundwater recharge within PID occurs through:

- Areal recharge from precipitation;
- Streambed infiltration from the Tule River;
- Deep percolation of applied irrigation water;
- Managed recharge in basins, particularly since 2017; and
- Subsurface inflows from adjacent GSAs.

Average total groundwater inflows within PID are approximately 45,100 acre-feet per year under historical conditions.

Groundwater Outflows

Groundwater leaves the system primarily through:

- Agricultural groundwater pumping;
- Municipal groundwater pumping; and
- Subsurface outflows to adjacent GSAs.

Average groundwater outflows total approximately 47,300 acre-feet per year, resulting in a small historical decline in groundwater storage when all components are included.

Change in Groundwater Storage

From WY 1987 to WY 2024, the groundwater budget indicates:

- An average annual storage decline of approximately 2,200 acre-feet per year when subsurface flows are included.
- When focusing only on in-GSA recharge versus pumping, storage shows an average annual increase of approximately 6,200 acre-feet per year, underscoring the importance of recharge and management actions.

In WY 2024, a wet year with substantial surface water availability and recharge, PID experienced a net increase in groundwater storage of approximately 30,700 acre-feet.

Projected Water Budget and Sustainability

A projected Water Budget was developed for 2025–2070 to evaluate future conditions under:

- Planned recharge and management actions;
- Climate change-adjusted hydrology;
- Reduced surface water reliability; and
- Implementation of PID's groundwater allocation framework.

The projections are used to:

- Test whether management actions achieve sustainability;
- Evaluate interactions between GSAs; and
- Support the determination of sustainable yield.

Connection to Groundwater Allocations

PID has taken a proactive approach to sustainability by:

- Eliminating Tier 1 Transitional pumping credits through Resolution No. 2024-09-20; and
- Requiring pumping at the sustainable yield of 0.99 acre-feet per acre beginning in WY 2025.

This represents an approximate 27% reduction in historical average pumping and accelerates sustainability by roughly 10 years relative to the original Eastern Tule GSA ramp-down period.

The Water Budget provides the technical foundation supporting this policy decision.

Stakeholder Considerations

For the Stakeholder Committee, the Water Budget:

- Provides transparency into how water moves through the PID GSA;
- Demonstrates the role of surface water and recharge in reducing reliance on groundwater;
- Highlights the importance of continued recharge opportunities during wet years; and
- Supports informed discussion on groundwater allocations, recharge investments, and long-term planning.

Next Steps

- Continue refining projected Water Budgets as Sustainable Management Criteria and Projects/Management Actions are finalized.
- Use Water Budget results to inform stakeholder outreach and future policy discussions.
- Incorporate updated hydrology and climate data as it becomes available.

Staff Recommended Actions

Is that the Committee receives and discusses the Water Budget for the Porterville Irrigation District Groundwater Sustainability Agency (PID GSA).

SECTION 2

2.4. Water Budget

Detailed water budget information is documented in *Chapter 2.3* of the *Subbasin Setting*. These budgets are derived from the Tule Subbasin Groundwater Flow Model, covering the period from Water Year (WY) 1987 through WY2024.

This section summarizes inflows and outflows components for the Subbasin and the PID GSA. The water budgets for the Subbasin and PID are divided into a surface water system water budget and a groundwater system water budget. Water budget tables are highly detailed and identify inflow and outflow components by source of water (e.g., evapotranspiration (ET) and deep percolation from Tule River). Water budget results for the Subbasin are presented in *Tables 2-2* and *2-3* in the *Subbasin Setting*. PID water budget results are included in this document and presented in **Tables 2-5** through **2-7** with a schematic of the different inflow and outflow components for the PID water budget is presented in **Figure 2-38**.

2.4.1. Surface Water Budget

The surface water budget for the Subbasin is described in *Chapter 2.3.1* of the *Tule Subbasin Setting*. Inflows to the surface water system include precipitation, applied imported surface water (irrigation), discharge from wells, and surface water inflows. Surface water budget for the Subbasin is presented in *Table 2-2a* in the *Subbasin Setting* and for PID is presented in **Table 2-5**. Surface water outflow includes recharge from precipitation, streambed infiltration and surface water outflows, canal losses, deep percolation of applied water, and evapotranspiration (ET). Surface water outflows for the Subbasin are presented in *Table 2-2b* for the Subbasin and for PID are presented in **Table 2-6**. The surface water outflows are color coded to show different components that are included with the estimate for native yield.

- Blue: Groundwater inflows to be included in the native yield estimate
- Magenta: Groundwater inflows to be excluded from the native yield estimate
- Yellow: Surface water or groundwater outflows not included in the native yield estimate.

2.4.1.1 Surface Water Inflows

Surface water inflows are for PID presented in **Table 2-5**.

2.4.1.1.1 Precipitation

The methodology used to determine annual average precipitation in the Subbasin is described in *Chapter 2.3.1.1.1* of the *Tule Subbasin Setting*. Annual precipitation values for the Subbasin were estimated based on the long-term average annual isohyetal map and using the annual precipitation data from the Porterville Station.

Across the Subbasin, the total annual precipitation ranged from 147,000 AF to 761,000 AF with an average of 361,000 AFY. The total annual precipitation within PID ranged from 4,300 AF to 28,100 AF between WY1987 to WY2024, with an average of 13,500 AFY.

2.4.1.1.2 Stream Inflows

Stream inflows into the Subbasin include inflows from the Tule River, Deer Creek and the White River. Flowing through PID is the Tule River. Flows in the Tule River are controlled through releases from Lake Success, which are documented in the TRA annual reports. During the historical water budget period, flows released from Lake Success ranged from 8,820 to 627,000 AF with an average value of 120,100 AFY. Both Deer Creek and the White River are located to the south of PID. Inflows from Deer Creek into the Subbasin are measured at Fountain Springs by the USGS. Over the historical water budget period, values have ranged from 2,000 to 88,000 AF with an average of 18,400 AFY. Flow measurements in the White River are based on the USGS stream gage station near Ducor. The estimated inflow into Subbasin from the White River ranged from 250 to 37,000 AF with an average of 6,000 AFY.

The Tule River first crosses the Tule East GSA (City of Porterville) before entering PID GSA. Flows into PID are estimated based on the calculated infiltration, evaporation, and diversions that occur prior to PID. Annual inflows into PID ranged from 300 to 487,100 AF with an average of 83,100 AFY.

2.4.1.1.3 Imported Water

Surface water is imported into the Subbasin and PID GSA via the FKC and the Tule River. Data from the USBR Central Valley Operation Annual Reports and Tule River Association Annual Reports were compiled to calculate the average amount of imported surface water, as described in *Chapter 2.3.1.1.3* of the *Tule Subbasin Setting*. PID holds a long-term contract for 15,000 AFY of Class 1 water and 30,000 AF of Class 2 water from the Friant Division. PID also manages a supply of Tule River water through agreements with four entities: the Porter Slough, Hubbs & Miner, Rhodes-Fine, and Gilliam-McGee Ditch Companies. Combined, these companies hold an average annual entitlement of approximately 12,900 AFY measured at Success Dam.

For the entire Subbasin, surface water deliveries ranged from 18,900 to 587,400 AF with an average of 352,900 AFY. Within PID, surface water deliveries ranged from 100 AF to 65,300 AF with an average of 15,400 AFY.

2.4.1.1.4 Discharge to Crops from Wells

Chapter 2.3.1.1.4 of the *Subbasin Setting* describes the water applied to crops from wells to be the total applied water minus imported surface water deliveries and diverted streamflow. Estimates of crop ET were used to estimate total crop demand, with an assumed irrigation efficiency of 79 percent.

Across the Subbasin, the average groundwater pumping over the historical period was 651,000 AFY. Within PID, the simulated groundwater pumping ranged from 9,400 AF to 38,500 AF with an average of 23,300 AFY.

2.4.1.1.5 Municipal Deliveries from Wells

Chapter 2.3.1.1.5 of the *Subbasin Setting* describes the methodology used to determine the average annual groundwater production for municipal use within the Subbasin for the historical period. Groundwater pumping for municipal supply is conducted by the City of Porterville and other local communities. The average municipal pumping across the Subbasin over the historical period was 19,600 AFY. For PID the average municipal pumping was 100 AFY.

2.4.1.2 Surface Water Outflows

Surface water outflows for PID are presented in **Table 2-6**.

2.4.1.2.1 Areal Recharge from Precipitation

Areal recharge from precipitation on the Subbasin valley floor was estimated using the methodology developed by Williamson et al. (1989). As part of a regional hydrogeological study of the California Central Valley, Williamson et al. developed a monthly soil-moisture budget for the Sacramento and San Joaquin Valleys based on a 50-year period of record (1922–1971). This budget accounts for potential evapotranspiration, assumed plant root depth, soil moisture-holding capacity, and precipitation.

In this model, monthly precipitation that exceeds both potential evapotranspiration and soil-moisture storage is categorized as net infiltration to the groundwater system. These results were simplified into a linear regression model, known as the Williamson Method, to estimate net infiltration from annual precipitation:

$$PPT_{ex} = (0.64) PPT - 6.2$$

Where:

- PPT_{ex} : Excess Annual Precipitation (net infiltration/recharge) in ft/yr.
- PPT : Total Annual Precipitation in ft/yr.

For the Subbasin, groundwater recharge from precipitation ranged from 0 to 241,000 AF with an average of 33,000 AFY. For PID, the areal recharge from precipitation ranged between 0 to 10,000 AF, with an average of 1,700 AFY.

2.4.1.2.2 Streambed Infiltration

As discussed in 2.4.1.2 of this GSP, the three primary surface water bodies in the Subbasin are the Tule River, Deer Creek, and the White River. Streambed infiltration from each of these surface water bodies is discussed in full detail in 2.3.1.2.2 of the *Subbasin Setting*. Average recharge from the Tule River was 19,700. Average recharge from Deer Creek over the historical water budget period 11,500 AF. Average recharge from the White River was 5,800 AF. The average annual streambed infiltration before within PID for the historical period is estimated to be 4,500 AFY, ranging from 300 to 10,400 AF.

2.4.1.2.3 Canal Losses

Chapter 2.3.1.2.3 of the *Subbasin Setting* contains a detailed description and methodology to calculate canal losses for the entire Subbasin. Canal losses are attributed to three sources, water from the natural surface water bodies (Tule River and Deer Creek) diverted to unlined canals, and water losses from imported water from the FKC.

For the entire Subbasin, losses from Tule River water diversion were on average 23,300 AFY, losses from water from Deer Creek was on average 2,500 AFY, and losses from imported water was on average 52,800 AFY. There are no canal losses attributed to water from the White River within the Subbasin. For PID, canal losses attributed to imported water ranged from 0 to 500 AF with and average of 200 AFY. Canal losses attributed to Tule River water ranged from 0 to 6,900 AF with an average of 1,600 AFY.

2.4.1.2.4 Deep Percolation of Applied Water

The deep percolation of applied water for the entire Subbasin is described in detail in *Chapter 2.3.1.2.5* of the *Subbasin Setting*. Sources of water for irrigation include the Tule River, Deer Creek, imported water, recycled water, and groundwater. Sources of deep percolation within PID include imported water and agricultural irrigation from groundwater pumping.

Across the Subbasin, deep percolation from Tule River water on average 22,000 AFY. Deep percolation from water diverted off of Deer Creek was 1,100 AFY. Deep percolation of imported water was approximately 96,900 AFY. Groundwater pumping contributed the greatest amount of deep percolation with an annual average of 148,200 AFY. Within PID, sources of deep percolation include imported surface water, Tule River water, and groundwater. For imported water, annual values ranged from 0 to 14,200 AF with an annual average of 5,800 AFY. Deep percolation of Tule River water ranged from 0 to 25,700 AF with an average of 6,200 AFY. Deep percolation of applied groundwater for agricultural use ranged from 2,200 to 8,000 AF with an average 5,200 AFY.

2.4.1.2.5 Managed Recharge in Basins

Over the historical water budget period for the entire Subbasin, imported surface water used for artificial recharge was on average 14,500 AFY. Within PID, there was a large increase in the recharge of imported water starting in 2017. From 2017 through 2024, recharge of imported surface water ranged from 0 AF during the dry years of WY2020 and WY2021 and was as high as 73,700 AF during WY2023.

2.4.1.2.6 Evapotranspiration

Sources of ET for the entire Subbasin are described in detail in *Chapter 2.3.1.2.6* of the *Subbasin Setting*. Sources of ET within PID include precipitation from crops and native vegetation and agricultural consumptive use, including groundwater pumping and imported surface water.

Evapotranspiration of Precipitation from Crops and Native Vegetation

ET of precipitation is estimated to be equal to total precipitation minus areal recharge and includes estimates for both crops and native vegetation.

Over the historical period, ET from precipitation for the entire Subbasin was on average 328,000 AFY. Within PID, ET from crops and native vegetation ranged from 4,300 to 18,000 AF with an average of 11,800 AFY.

Agricultural Consumptive Use

Agricultural consumptive for the entire subbasin includes all sources of irrigation excluding precipitation. The methodology used to estimate agricultural consumptive use within the Subbasin is described in *Chapter 2.3.1.2.6 of the Subbasin Setting*. ET from agricultural consumptive use within PID is calculated separately for imported water, Tule River water, and groundwater (pumping) for the historical period.

For the entire Subbasin, the estimated average annual agricultural consumptive use was 724,000 AFY. Within PID, ET from agricultural consumptive use of imported water ranged from 100 to 12,600 AF with an average of 6,600 AFY. For ET from Tule River water, the annual ET values ranged from 0 to 15,400 AF with an average of 4,400 AFY. ET from groundwater pumping ranged from 6,700 to 30,500 AF with an average of 17,900 AFY.

2.4.1.2.7 Surface Water Outflows

Surface water outflow within the Subbasin for Tule River is described in *Chapter 2.3.1.2.7 of the Subbasin Setting*. Over the historical period, Tule River outflows ranged from 0 to 121,000 AF with an average of 12,000 AFY

Surface water outflows of PID were estimated based on the surface water inflows minus diversions and deep percolation. Surface water outflow through Tule River ranged from 0 to 477,600 AF with an average of 78,900 AFY. It should be noted that flows out of PID are greater than flows out of the Subbasin because of the additional infiltration that occurs in the GSAs to the west of PID within the Subbasin.

2.4.2. Groundwater Budget

As shown in **Table 2-7**, the groundwater budget for the Tule Subbasin tracks all water entering and leaving the system. This balance is defined by the core equation:

$$\text{Inflow} - \text{Outflow} = \pm \Delta S$$

Inflows for the groundwater budget consists of areal recharge from precipitation, streambed infiltration, managed infiltration of water in basins for the purpose of groundwater storage, canal losses, return flows of applied irrigation water, and subsurface inflows. Groundwater outflows include all groundwater pumping (agricultural) and subsurface outflows. The subsurface inflow and outflow components in the groundwater budget are excluded when determining whether the water budget is balanced, and therefore, groundwater pumping is directly compared to all in-GSA recharge components.

Following the format of the surface water budget tables, the groundwater budget (**Table 2-7**) distinguishes between different water sources using specific colors:

- Blue: Groundwater inflows to be included in the native yield estimate

- Magenta: Groundwater inflows to be excluded from the native yield estimate
- Yellow: Surface water or groundwater outflows not included in the native yield estimate.

A chart describing the average annual values for each inflow and outflow component of the groundwater budget is presented in **Figure 2-39**. Average inflows were 45,100 AFY while the average outflows were 47,300 AFY. The average change in storage from WY1987 to WY2024 was a decline of -2,200 AFY. When excluding subsurface inflows and outflows, the average change in storage was an increase of 6,200 AFY.

2.4.2.1 Groundwater Inflows

Most of the groundwater inflow components are equal to the items described in the *Surface Water Outflow Section 2.4.1.2*. The only additional component to groundwater inflow is subsurface inflows.

2.4.2.1.1 Area Recharge from Precipitation

Areal recharge for the Subbasin is described in *Chapter 2.3.2.1.1* of the *Subbasin Setting*. Additional details are provided in section 2.4.1.2.1 of this GSP. For PID, the areal recharge from precipitation ranged between 0 to 10,000 AF, with an average of 1,700 AFY.

2.4.2.1.2 Streambed Infiltration

Streambed infiltration for Deer Creek across the Subbasin is discussed Chapter 2.3.2.1.3 of the *Subbasin Setting*. Additional details are provided in section 2.4.1.2.2 of this GSP. The average annual streambed infiltration before within PID for the historical period is estimated to be 4,500 AFY, ranging from 300 to 10,400 AF.

2.4.2.1.3 Canal Losses

Canal losses for imported water across the Subbasin are discussed in Chapter 2.3.1.2.3 of the *Subbasin Setting*. Additional details are provided in section 2.4.1.2.3 of this GSP. Canal losses attributed to imported water ranged from 0 to 500 AF with an average of 200 AFY. Canal losses attributed to Tule River water ranged from 0 to 6,900 AF with an average of 1,600 AFY.

2.4.2.1.4 Return Flows from Applied Water

Return flows are from both applied surface water and groundwater. Groundwater recharge from applied groundwater is discussed in *Chapter 2.3.2.1.7* of the *Subbasin Setting*. Additional details are provided in section 2.4.1.2.4. Within PID, sources of deep percolation include imported surface water, Tule River water, and groundwater. For imported water, annual values ranged from 0 to 14,200 AF with an annual average of 5,800 AFY. Deep percolation of Tule River water ranged from 0 to 25,700 AF with an average of 6,200 AFY. Deep percolation of applied groundwater for agricultural use ranged from 2,200 to 8,000 AF with an average of 5,200 AFY.

2.4.2.1.5 Managed Recharge in Basin

Managed recharge in basin is discussed in *Chapter 2.3.1.2.4* of the *Subbasin Setting*. Additional details are provided in section 2.4.1.2.5 of this GSP. Within PID, there was a large increase in the recharge of imported

water starting in 2017. From 2017 through 2024, recharge of imported surface water ranged from 0 AF during the dry years of WY2020 and WY2021 and was as high as 73,700 AF during WY2023.

2.4.2.1.6 Subsurface Inflows

Chapter 2.3.2.1.9 of the Subbasin Setting describes subsurface inflow for the entire Subbasin. Average inflows into the Subbasin from adjacent subbasins was on average 75,000 AFY. This does not account for flows between GSAs within the Subbasin. For PID, subsurface inflow from other GSAs ranged between 10,900 and 20,100 AF with an average 15,200 AFY. As discussed in the *Groundwater Conditions* section of this GSP and presented in **Figures 2-20** through **2-23**, groundwater flow is generally east to west or northeast to southwest which would suggest that most of the water flowing out of PID is to the west where a cone of depression is located within the Subbasin.

2.4.2.2 Groundwater Outflows

2.4.2.2.1 Agricultural Groundwater Pumping

Chapter 2.3.2.3.2 of the Subbasin Setting describes agricultural groundwater pumping throughout the entire Subbasin. Groundwater pumping for the entire subbasin was on average 651,000 AFY. Within PID agricultural groundwater pumping for the historical period ranged from 9,400 AF to 38,500 AF, with an average of 23,600 AFY. Average municipal pumping within PID was 100 AFY.

2.4.2.2.2 Subsurface Outflows

Subsurface outflows for the Subbasin are described in *Chapter 2.3.2.3.4 of the Subbasin Setting*. For the entire Subbasin, the average subsurface outflow was approximately 82,000 AFY. This does not account for flow between GSAs within the Subbasin. Within PID, subsurface outflows into adjacent GSAs ranged from 19,000 to 29,100 AF, with an average of 23,700 AFY, which is greater than the average inflows of 15,200 AFY.

2.4.3. Current Water Budget

The current water budget for PID is presented in the historical water budget tables as the most recent water year (**Table 2-5** through **Table 2-7**). In WY 2024, the total groundwater inflow into the GSA was approximately 77,400 AF and the total groundwater outflow was 46,700 AF. Change in storage was an increase of approximately 30,700 AF. When excluding for subsurface inflows and outflows, the change in storage was an increase of 38,300 AF.

2.4.4. Projected Water get

To achieve long-term sustainability, a projected water budget was developed for the Tule Subbasin, incorporating the specific projects and management actions proposed by each of the GSAs. The projected water budget is for the time period 2025 through 2070. Using a groundwater flow model for the 45-year projection period, the subbasin aimed to:

- Verify Sustainability: Assess whether planned actions successfully meet sustainability goals.

- Analyze GSA Interactions: Evaluate how groundwater levels in one GSA are affected by the actions of neighboring GSAs.
- Determine Sustainable Yield: Estimate the maximum amount of water that can be withdrawn annually without causing undesirable results.
- Climate Change Integration

The model accounts for future climate variability by adjusting baseline hydrology and water deliveries. These adjustments—derived from the DWR’s CalSim-II model and recommendations from the Climate Change Technical Advisory Group—affect three primary water sources:

1. Tule River flows
2. Friant-Kern Canal deliveries
3. State Water Project (California Aqueduct) deliveries

Climate-related adjustments to hydrology and surface water deliveries were applied over two distinct planning horizons:

- 2030 Central Tendency: Provides near-term projections of climate impacts on hydrology, centered on the year 2030.
- 2070 Central Tendency: Provides long-term projections of potential climate impacts, centered on the year 2070. These adjustments were applied to the model projection for the period from 2050 to 2070.
- Imported Water Supply Adjustments

For supplies arriving via the Friant-Kern Canal, TH&Co utilized delivery schedules from the Friant Water Authority (2018). These projections account for two major factors:

1. San Joaquin River Restoration Project (SJRRP): Projected deliveries include adjustments associated with this restoration effort.
2. Implementation Timeline: Adjustments for climate change and the SJRRP begin in 2025.
 - Changes are applied incrementally between 2025 and 2030.
 - The full suite of adjustments reaches 100% implementation by 2030.

The projected groundwater budget for PID is presented in **Table 2-8**.

2.4.5. Sustainable Yield [PLACEHOLDER – will be updated as SMCs/PMAs are finalized]

PID was previously a member of the ETGSA, which developed a groundwater accounting system to track groundwater use and implement a groundwater allocation program. This ETGSA program allowed for pumping in excess of the sustainable yield through 2035 (**Table 2-9**). These percentages allow for pumping in excess of the sustainable yield and are referred to as transitional pumping credits. In an effort to achieve

sustainable conditions and address subsidence, PID has adopted resolution 2024-09-20, which eliminated all transitional pumping credits and permit pumping at the sustainable yield ten years sooner than what was originally agreed to by the ETGSA and the rest of the Tule Subbasin.

Table 2-9. Percentage of Historical Annual Avg. Use Above Sustainable Limit (ETGSA GSP)			
2021-2025	2026-2030	2031-2035	2035-2040
90%	80%	30%	0%

The sustainable yield for PID is 0.99 AF/acre. The historical average pumping for PID is 23,100 AF or 1.37 AF/acre. Although the ETGSA planned on having a glide path to achieve the sustainable yield allocation by 2035 as noted in **Table 2-9**, PID elected—through Resolution No. 2024-09-20—to disregard the glide path and achieve the sustainable yield pumping allocation by WY2025. This resolution also eliminated the ability of landowners within PID to use transition credits accumulated when pumping below the Table 5 target percentages and using those credits in future years to allow for increases in pumping above glide path target percentages. Sustainable yield for PID has been established at 0.99 AF/acre. For WY2025, by pumping at the sustainable yield limit and not allowing for any transitional pumping credits, PID has reduced pumping by approximately 6,400 AF/year or 27% of the historical average.

Table 2-5. PID Surface Water Inflow (acre-ft)

Water Year	Precipitation	Stream Inflow			Imported Water							Recycled Water	Discharge from Wells		Total In
		Tule River	Deer Creek	White River	Saucelito ID	Terra Bella ID	Porterville ID	Tea Pot Dome WD	City of Porterville	Hope WD	Ducor ID		Agricultural	Municipal	
1987	14,900	44,100	NA	NA	NA	NA	15,300	NA	NA	NA	NA	NA	18,000	100	92,400
1988	13,100	16,600	NA	NA	NA	NA	13,100	NA	NA	NA	NA	NA	23,100	100	66,000
1989	10,500	25,600	NA	NA	NA	NA	13,100	NA	NA	NA	NA	NA	28,400	100	77,700
1990	12,400	8,900	NA	NA	NA	NA	11,500	NA	NA	NA	NA	NA	28,000	100	60,900
1991	15,500	25,000	NA	NA	NA	NA	11,300	NA	NA	NA	NA	NA	21,000	100	72,900
1992	10,900	11,300	NA	NA	NA	NA	15,600	NA	NA	NA	NA	NA	27,500	100	65,400
1993	17,900	61,700	NA	NA	NA	NA	12,300	NA	NA	NA	NA	NA	16,800	100	108,800
1994	11,600	33,400	NA	NA	NA	NA	12,900	NA	NA	NA	NA	NA	27,500	100	85,500
1995	23,400	151,000	NA	NA	NA	NA	9,500	NA	NA	NA	NA	NA	12,500	100	196,500
1996	12,400	111,000	NA	NA	NA	NA	13,800	NA	NA	NA	NA	NA	20,000	100	157,300
1997	17,000	258,500	NA	NA	NA	NA	13,400	NA	NA	NA	NA	NA	17,400	100	306,400
1998	28,100	295,200	NA	NA	NA	NA	10,200	NA	NA	NA	NA	NA	9,400	100	343,000
1999	13,200	75,200	NA	NA	NA	NA	16,100	NA	NA	NA	NA	NA	19,200	100	123,800
2000	13,700	69,100	NA	NA	NA	NA	15,500	NA	NA	NA	NA	NA	28,800	100	127,200
2001	10,800	30,900	NA	NA	NA	NA	15,400	NA	NA	NA	NA	NA	23,300	100	80,500
2002	10,500	37,500	NA	NA	NA	NA	13,600	NA	NA	NA	NA	NA	31,100	100	92,800
2003	13,100	83,800	NA	NA	NA	NA	14,600	NA	NA	NA	NA	NA	26,400	100	138,000
2004	9,500	27,400	NA	NA	NA	NA	14,700	NA	NA	NA	NA	NA	34,800	100	86,500
2005	18,900	98,000	NA	NA	NA	NA	14,700	NA	NA	NA	NA	NA	15,300	100	147,000
2006	18,400	136,100	NA	NA	NA	NA	13,300	NA	NA	NA	NA	NA	15,500	100	183,400
2007	7,300	22,200	NA	NA	NA	NA	9,800	NA	NA	NA	NA	NA	34,500	100	73,900
2008	10,500	46,300	NA	NA	NA	NA	13,000	NA	NA	NA	NA	NA	30,900	100	100,800
2009	8,600	32,000	NA	NA	NA	NA	18,000	NA	NA	NA	NA	NA	19,200	100	77,900
2010	14,700	89,200	NA	NA	NA	NA	14,300	NA	NA	NA	NA	NA	10,900	100	129,200
2011	22,200	200,400	NA	NA	NA	NA	9,400	NA	NA	NA	NA	NA	15,800	100	247,900
2012	15,900	62,800	NA	NA	NA	NA	9,300	NA	NA	NA	NA	NA	18,300	100	106,400
2013	5,600	16,100	NA	NA	NA	NA	10,300	NA	NA	NA	NA	NA	30,700	100	62,800
2014	5,700	700	NA	NA	NA	NA	200	NA	NA	NA	NA	NA	37,700	100	44,400
2015	9,100	300	NA	NA	NA	NA	100	NA	NA	NA	NA	NA	32,400	100	42,000
2016	14,900	40,000	NA	NA	NA	NA	13,300	NA	NA	NA	NA	NA	16,300	100	84,600
2017	17,500	197,200	NA	NA	NA	NA	21,700	NA	NA	NA	NA	NA	24,200	100	260,700
2018	8,300	33,400	NA	NA	NA	NA	12,700	NA	NA	NA	NA	NA	32,300	100	86,800
2019	19,300	152,800	NA	NA	NA	NA	60,900	NA	NA	NA	NA	NA	15,300	100	248,400
2020	9,400	29,100	NA	NA	NA	NA	11,500	NA	NA	NA	NA	NA	26,597	100	76,697
2021	4,300	600	NA	NA	NA	NA	3,100	NA	NA	NA	NA	NA	38,482	100	46,582
2022	9,900	13,200	NA	NA	NA	NA	9,700	NA	NA	NA	NA	NA	28,298	100	61,198
2023	22,400	487,100	NA	NA	NA	NA	65,300	NA	NA	NA	NA	NA	17,119	100	592,019
2024	12,200	133,200	NA	NA	NA	NA	34,000	NA	NA	NA	NA	NA	23,425	100	202,925

Table 2-6. PID Surface Water Outflow (acre-ft)

Water Year	Areal Recharge of Precipitation	Streambed Infiltration			Recharge in Basins				Canal Loss			Deep Percolation of Applied Water					
		Tule River	Deer Creek	White River	Tule River	Deer Creek	Imported Water	Recycled Water	Tule River	Deer Creek	Imported Water	Tule River	Deer Creek	Imported Water	Recycled Water	Agricultural Pumping	Municipal Pumping
		Success to Oettle Bridge Infiltration	Before Trenton Weir Infiltration		Tule River	Deer Creek	Imported Water	Recycled Water	Tule River	Deer Creek	Imported Water	Tule River	Deer Creek	Imported Water	Recycled Water	Agricultural Pumping	Municipal Pumping
1987	1,600	3,700	NA	NA	0	NA	0	0	400	NA	200	4,100	NA	6,900	0	4,300	0
1988	700	1,900	NA	NA	0	NA	0	0	900	NA	100	4,900	NA	6,900	0	5,600	0
1989	0	2,800	NA	NA	0	NA	0	0	300	NA	100	1,200	NA	6,100	0	6,900	0
1990	700	1,800	NA	NA	0	NA	0	0	0	NA	0	600	NA	4,900	0	6,800	0
1991	1,900	2,300	NA	NA	0	NA	0	0	0	NA	100	600	NA	4,300	0	5,100	0
1992	0	1,400	NA	NA	0	NA	0	0	100	NA	100	500	NA	4,800	0	6,600	0
1993	3,500	4,100	NA	NA	0	NA	0	0	2,400	NA	400	9,700	NA	6,200	0	4,000	0
1994	0	2,200	NA	NA	0	NA	0	0	0	NA	100	3,000	NA	4,900	0	6,500	0
1995	7,100	8,100	NA	NA	0	NA	0	0	4,700	NA	400	19,200	NA	5,400	0	2,900	0
1996	0	5,100	NA	NA	0	NA	0	0	2,200	NA	300	17,500	NA	7,300	0	4,700	0
1997	3,000	8,200	NA	NA	0	NA	0	0	3,900	NA	300	19,000	NA	8,300	0	4,100	0
1998	10,000	8,500	NA	NA	0	NA	0	0	5,800	NA	300	20,400	NA	6,500	0	2,200	0
1999	500	4,200	NA	NA	0	NA	0	0	800	NA	200	3,900	NA	6,600	0	4,500	0
2000	800	5,000	NA	NA	0	NA	0	0	1,000	NA	200	3,200	NA	8,000	0	6,900	0
2001	0	3,400	NA	NA	0	NA	0	0	900	NA	100	1,700	NA	6,000	0	5,500	0
2002	0	4,600	NA	NA	0	NA	0	0	600	NA	100	3,900	NA	6,900	0	7,400	0
2003	400	6,200	NA	NA	0	NA	0	0	800	NA	200	1,400	NA	4,800	0	5,400	0
2004	0	2,900	NA	NA	0	NA	0	0	600	NA	100	1,000	NA	4,300	0	6,900	0
2005	4,100	6,400	NA	NA	0	NA	0	0	2,100	NA	300	8,600	NA	7,900	0	3,000	0
2006	3,900	6,900	NA	NA	0	NA	0	0	2,900	NA	300	24,100	NA	10,500	0	3,200	0
2007	0	2,200	NA	NA	0	NA	0	0	0	NA	0	300	NA	2,400	0	6,900	0
2008	0	3,600	NA	NA	0	NA	0	0	600	NA	100	1,700	NA	5,500	0	6,200	0
2009	0	2,800	NA	NA	0	NA	0	0	500	NA	100	1,400	NA	5,400	0	3,800	0
2010	1,500	6,700	NA	NA	0	NA	0	0	2,300	NA	300	14,000	NA	8,600	0	2,200	0
2011	6,300	8,600	NA	NA	0	NA	0	0	4,400	NA	400	25,400	NA	8,000	0	3,200	0
2012	2,200	4,100	NA	NA	0	NA	0	0	700	NA	100	900	NA	3,800	0	3,800	0
2013	0	1,700	NA	NA	0	NA	0	0	0	NA	0	0	NA	2,100	0	6,300	0
2014	0	700	NA	NA	0	NA	0	0	100	NA	0	0	NA	0	0	7,700	0
2015	0	300	NA	NA	0	NA	0	0	0	NA	0	100	NA	0	0	6,600	0
2016	1,600	4,600	NA	NA	0	NA	0	0	1,100	NA	100	1,600	NA	5,600	0	3,300	100
2017	3,300	9,400	NA	NA	0	NA	14,500	0	5,500	NA	500	25,700	NA	12,700	0	5,000	100
2018	0	3,100	NA	NA	0	NA	2,900	0	300	NA	200	200	NA	3,400	0	6,600	100
2019	4,400	7,100	NA	NA	0	NA	43,800	0	3,700	NA	300	3,300	NA	13,700	0	3,100	100
2020	0	3,800	NA	NA	0	NA	0	0	500	NA	100	1,600	NA	3,800	0	5,500	100
2021	0	600	NA	NA	0	NA	0	0	0	NA	0	500	NA	600	0	8,000	100
2022	0	4,300	NA	NA	0	NA	4,500	0	100	NA	100	500	NA	1,400	0	5,900	100
2023	6,400	9,400	NA	NA	0	NA	73,700	0	6,900	NA	400	9,700	NA	14,200	0	3,500	100
2024	0	10,400	NA	NA	0	NA	40,400	0	2,800	NA	300	1,100	NA	1,800	0	4,900	100
Average	1,700	4,600	NA	NA	0	NA	4,900	0	1,600	NA	200	6,300	NA	5,800	0	5,200	0

Groundwater Inflows to be Included in the Native Yield Estimate

Groundwater Inflows to be Excluded from the Native Yield Estimate

Surface Water or Groundwater Outflows Not Included in Native Yield Estimate

Water Year	PID Surface Water Outflow (acre-ft)														
	Evapotransportation										Surface Outflow				Total Out
	Precipitation Crops/Native	Tule River		Deer Creek		White River	Imported Water	Ag. Cons. Use from Pumping	Recycled Water	Municipal (Landscape ET)	Tule River		Deer Creek	White River	
Agricultural Cons. Use		Stream Channel	Agricultural Cons. Use		Stream Channel	Stream Channel	Agricultural Cons. Use		Agricultural Cons. Use		To LTIRD GSA	To FKC	MODIFIED (To ETGSA)	To DEID GSA	
1987	13,300	4,900	200	NA	NA	NA	8,400	13,300	NA	NA	40,400	0	NA	NA	101,700
1988	12,400	4,400	100	NA	NA	NA	6,100	17,000	NA	NA	14,700	0	NA	NA	75,700
1989	10,500	1,400	100	NA	NA	NA	7,000	21,000	NA	NA	22,900	0	NA	NA	80,300
1990	11,700	900	200	NA	NA	NA	6,700	20,700	NA	NA	7,100	0	NA	NA	62,100
1991	13,600	1,000	100	NA	NA	NA	7,000	15,600	NA	NA	22,700	0	NA	NA	74,300
1992	10,900	1,100	200	NA	NA	NA	10,700	20,200	NA	NA	9,900	0	NA	NA	66,500
1993	14,400	9,600	200	NA	NA	NA	6,100	12,200	NA	NA	57,600	0	NA	NA	130,400
1994	11,600	4,900	100	NA	NA	NA	8,000	20,000	NA	NA	31,300	0	NA	NA	92,600
1995	16,400	14,400	200	NA	NA	NA	4,000	8,800	NA	NA	142,900	0	NA	NA	234,500
1996	12,400	15,400	200	NA	NA	NA	6,500	14,300	NA	NA	105,900	0	NA	NA	191,800
1997	14,100	11,800	200	NA	NA	NA	5,100	12,500	NA	NA	250,300	0	NA	NA	340,800
1998	18,000	11,400	200	NA	NA	NA	3,600	6,700	NA	NA	286,700	0	NA	NA	380,300
1999	12,700	5,600	200	NA	NA	NA	9,500	13,900	NA	NA	71,000	0	NA	NA	133,600
2000	12,900	3,000	200	NA	NA	NA	7,500	21,200	NA	NA	64,000	0	NA	NA	133,900
2001	10,800	2,700	100	NA	NA	NA	9,500	16,900	NA	NA	27,500	0	NA	NA	85,100
2002	10,500	3,800	200	NA	NA	NA	6,700	22,700	NA	NA	32,900	0	NA	NA	100,300
2003	12,700	2,900	200	NA	NA	NA	9,900	20,100	NA	NA	77,600	0	NA	NA	142,600
2004	9,500	2,400	200	NA	NA	NA	10,400	26,500	NA	NA	24,500	0	NA	NA	89,300
2005	14,700	7,400	200	NA	NA	NA	6,800	11,600	NA	NA	91,500	0	NA	NA	164,600
2006	14,600	6,200	200	NA	NA	NA	2,700	12,100	NA	NA	129,200	0	NA	NA	216,800
2007	7,300	800	100	NA	NA	NA	7,400	26,500	NA	NA	20,000	0	NA	NA	73,900
2008	10,500	2,300	100	NA	NA	NA	7,500	23,800	NA	NA	42,700	0	NA	NA	104,600
2009	8,600	3,300	200	NA	NA	NA	12,600	14,500	NA	NA	29,200	0	NA	NA	82,400
2010	13,200	9,200	200	NA	NA	NA	5,700	8,200	NA	NA	82,500	0	NA	NA	154,600
2011	15,900	4,400	200	NA	NA	NA	1,400	12,400	NA	NA	191,800	0	NA	NA	282,400
2012	13,700	1,300	200	NA	NA	NA	5,500	14,400	NA	NA	58,800	0	NA	NA	109,500
2013	5,600	0	200	NA	NA	NA	8,200	24,000	NA	NA	14,400	0	NA	NA	62,500
2014	5,700	200	100	NA	NA	NA	100	29,500	NA	NA	0	0	NA	NA	44,100
2015	9,100	400	100	NA	NA	NA	100	25,300	NA	NA	0	0	NA	NA	42,000
2016	13,300	2,100	100	NA	NA	NA	7,600	12,700	NA	NA	35,400	0	NA	NA	89,200
2017	14,200	8,300	200	NA	NA	NA	4,100	19,000	NA	NA	187,800	0	NA	NA	310,300
2018	8,300	400	200	NA	NA	NA	6,600	25,400	NA	NA	30,200	0	NA	NA	87,900
2019	14,900	2,900	400	NA	NA	NA	11,900	12,000	NA	NA	145,700	0	NA	NA	267,300
2020	9,400	3,200	200	NA	NA	NA	7,700	21,100	NA	NA	25,300	0	NA	NA	82,300
2021	4,300	2,000	200	NA	NA	NA	2,400	30,500	NA	NA	0	0	NA	NA	49,200
2022	9,900	1,700	200	NA	NA	NA	4,900	22,400	NA	NA	8,800	0	NA	NA	64,800
2023	16,000	5,000	200	NA	NA	NA	7,300	13,600	NA	NA	477,600	0	NA	NA	644,000
2024	12,200	4,000	200	NA	NA	NA	6,800	18,600	NA	NA	122,800	0	NA	NA	226,400
Average	11,800	4,400	200	NA	NA	NA	6,500	18,100	NA	NA	79,500	0	NA	NA	150,600

Groundwater Inflows to be Included in the Native Yield Estimate

Groundwater Inflows to be Excluded from the Native Yield Estimate

Surface Water or Groundwater Outflows Not Included in Native Yield Estimate

Table 2-7

Porterville Irrigation District
Historical Groundwater Budget 1986/87 to 2023/24

Water Year	Groundwater Inflows (acre-ft)																					
	Areal Recharge from Precipitation	Tule River				Deer Creek				White River	Imported Water Deliveries			Agricultural Pumping (Groundwater)	Municipal Pumping			Subsurface Inflow		Mountain-Block Recharge	Total In	
		Success to Oettle Bridge Infiltration	Recharge in Basins	Canal Loss	Return Flow of Applied Irrigation Water	Infiltration Before Trenton Weir	Canal Loss	Recharge in Basin	Return Flows of Applied Irrigation Water		Infiltration Before DEID	Recharge in Basins	Canal Loss	Return Flows	Irrigated Agriculture (Return Flows of Applied Irrigation Water)	Return Flow of Applied Irrigation Water	Agricultural Return Flow	Artificial Recharge				
1987	1,600	3,700	0	400	4,100	NA	NA	NA	NA	NA	0	200	6,900	4,300	0	0	0	0	17,000	0	38,200	
1988	700	1,900	0	900	4,900	NA	NA	NA	NA	NA	0	100	6,900	5,600	0	0	0	0	19,000	0	40,000	
1989	0	2,800	0	300	1,200	NA	NA	NA	NA	NA	0	100	6,100	6,900	0	0	0	0	20,100	0	37,500	
1990	700	1,800	0	0	600	NA	NA	NA	NA	NA	0	0	4,900	6,800	0	0	0	0	19,700	0	34,500	
1991	1,900	2,300	0	0	600	NA	NA	NA	NA	NA	0	100	4,300	5,100	0	0	0	0	17,900	0	32,200	
1992	0	1,400	0	100	500	NA	NA	NA	NA	NA	0	100	4,800	6,600	0	0	0	0	19,000	0	32,500	
1993	3,500	4,100	0	2,400	9,700	NA	NA	NA	NA	NA	0	400	6,200	4,000	0	0	0	0	15,900	0	46,200	
1994	0	2,200	0	0	3,000	NA	NA	NA	NA	NA	0	100	4,900	6,500	0	0	0	0	16,100	0	32,800	
1995	7,100	8,100	0	4,700	19,200	NA	NA	NA	NA	NA	0	400	5,400	2,900	0	0	0	0	13,100	0	60,900	
1996	0	5,100	0	2,200	17,500	NA	NA	NA	NA	NA	0	300	7,300	4,700	0	0	0	0	13,300	0	50,400	
1997	3,000	8,200	0	3,900	19,000	NA	NA	NA	NA	NA	0	300	8,300	4,100	0	0	0	0	13,100	0	59,900	
1998	10,000	8,500	0	5,800	20,400	NA	NA	NA	NA	NA	0	300	6,500	2,200	0	0	0	0	11,600	0	65,300	
1999	500	4,200	0	800	3,900	NA	NA	NA	NA	NA	0	200	6,600	4,500	0	0	0	0	13,300	0	34,000	
2000	800	5,000	0	1,000	3,200	NA	NA	NA	NA	NA	0	200	8,000	6,900	0	0	0	0	15,500	0	40,600	
2001	0	3,400	0	900	1,700	NA	NA	NA	NA	NA	0	100	6,000	5,500	0	0	0	0	14,100	0	31,700	
2002	0	4,600	0	600	3,900	NA	NA	NA	NA	NA	0	100	6,900	7,400	0	0	0	0	15,500	0	39,000	
2003	400	6,200	0	800	1,400	NA	NA	NA	NA	NA	0	200	4,800	5,400	0	0	0	0	14,800	0	34,000	
2004	0	2,900	0	600	1,000	NA	NA	NA	NA	NA	0	100	4,300	6,900	0	0	0	0	15,800	0	31,600	
2005	4,100	6,400	0	2,100	8,600	NA	NA	NA	NA	NA	0	300	7,900	3,000	0	0	0	0	13,500	0	45,900	
2006	3,900	6,900	0	2,900	24,100	NA	NA	NA	NA	NA	0	300	10,500	3,200	0	0	0	0	12,300	0	64,100	
2007	0	2,200	0	0	300	NA	NA	NA	NA	NA	0	0	2,400	6,900	0	0	0	0	14,800	0	26,600	
2008	0	3,600	0	600	1,700	NA	NA	NA	NA	NA	0	100	5,500	6,200	0	0	0	0	15,300	0	33,000	
2009	0	2,800	0	500	1,400	NA	NA	NA	NA	NA	0	100	5,400	3,800	0	0	0	0	12,900	0	26,900	
2010	1,500	6,700	0	2,300	14,000	NA	NA	NA	NA	NA	0	300	8,600	2,200	0	0	0	0	10,900	0	46,500	
2011	6,300	8,600	0	4,400	25,400	NA	NA	NA	NA	NA	0	400	8,000	3,200	0	0	0	0	12,100	0	68,400	
2012	2,200	4,100	0	700	900	NA	NA	NA	NA	NA	0	100	3,800	3,800	0	0	0	0	12,200	0	27,800	
2013	0	1,700	0	0	0	NA	NA	NA	NA	NA	0	0	2,100	6,300	0	0	0	0	15,300	0	25,400	
2014	0	700	0	100	0	NA	NA	NA	NA	NA	0	0	0	7,700	0	0	0	0	16,600	0	25,100	
2015	0	300	0	0	100	NA	NA	NA	NA	NA	0	0	0	6,600	0	0	0	0	16,000	0	23,000	
2016	1,600	4,600	0	1,100	1,600	NA	NA	NA	NA	NA	0	100	5,600	3,300	100	0	0	0	0	14,400	0	32,400
2017	3,300	9,400	0	5,500	25,700	NA	NA	NA	NA	NA	14,500	500	12,700	5,000	100	0	0	0	0	15,000	0	91,700
2018	0	3,100	0	300	200	NA	NA	NA	NA	NA	2,900	200	3,400	6,600	100	0	0	0	0	15,900	0	32,700
2019	4,400	7,100	0	3,700	3,300	NA	NA	NA	NA	NA	43,800	300	13,700	3,100	100	0	0	0	0	16,900	0	96,400
2020	0	3,800	0	500	1,600	NA	NA	NA	NA	NA	0	100	3,800	5,500	100	0	0	0	0	15,600	0	31,000
2021	0	600	0	0	500	NA	NA	NA	NA	NA	0	0	600	8,000	100	0	0	0	0	15,600	0	25,400
2022	0	4,300	0	100	500	NA	NA	NA	NA	NA	4,500	100	1,400	5,900	100	0	0	0	0	15,600	0	32,500
2023	6,400	9,400	0	6,900	9,700	NA	NA	NA	NA	NA	73,700	400	14,200	3,500	100	0	0	0				

Porterville Irrigation District

Historical Groundwater Budget 1986/87 to 2023/24

Groundwater Outflows (acre-ft)					Change in Storage (acre-ft)		
Groundwater Pumping		Sub-surface Outflow		Total Out	Aquitard Change in Storage	Aquifer Change in Storage	Total Change in Storage
Municipal	Agriculture	To Outside Subbasin	To Other GSAs				
-100	-18,000	0	-24,700	-42,800	-2,800	-1,800	-4,600
-100	-23,100	0	-25,200	-48,400	-1,300	-7,000	-8,300
-100	-28,400	0	-23,300	-51,900	-1,000	-13,400	-14,400
-100	-28,000	0	-23,300	-51,500	-800	-16,100	-17,000
-100	-21,000	0	-21,900	-43,000	0	-10,800	-10,800
-100	-27,500	0	-23,200	-50,800	-1,700	-16,500	-18,200
-100	-16,800	0	-20,900	-37,800	500	7,900	8,400
-100	-27,500	0	-23,100	-50,700	-2,200	-15,900	-18,000
-100	-12,500	0	-24,000	-36,600	700	23,500	24,200
-100	-20,000	0	-26,200	-46,300	-800	4,900	4,000
-100	-17,400	0	-28,000	-45,400	300	14,100	14,400
-100	-9,400	0	-29,100	-38,500	1,200	25,800	27,000
-100	-19,200	0	-27,200	-46,500	-900	-11,300	-12,200
-100	-28,800	0	-24,900	-53,800	-800	-12,300	-13,100
-100	-23,300	0	-25,500	-48,800	-800	-16,200	-17,100
-100	-31,100	0	-25,800	-57,000	-1,500	-16,400	-17,900
-100	-26,400	0	-22,400	-48,900	-1,400	-13,500	-14,900
-100	-34,800	0	-22,700	-57,500	-4,100	-21,800	-25,900
-100	-15,300	0	-21,300	-36,700	-100	9,500	9,400
-100	-15,500	0	-24,100	-39,700	600	23,800	24,400
-100	-34,500	0	-24,100	-58,600	-3,000	-29,000	-32,000
-100	-30,900	0	-23,500	-54,400	-3,300	-18,200	-21,500
-100	-19,200	0	-22,900	-42,200	-2,000	-13,200	-15,200
-100	-10,900	0	-23,000	-34,000	-300	12,800	12,500
-100	-15,800	0	-24,700	-40,600	500	27,500	28,000
-100	-18,300	0	-22,000	-40,400	-600	-12,000	-12,600
-100	-30,700	0	-22,800	-53,600	-2,300	-25,700	-28,000
-100	-37,700	0	-21,300	-59,200	-5,900	-28,100	-33,900
-100	-32,400	0	-19,500	-51,900	-6,200	-22,600	-28,700
-100	-16,300	0	-19,000	-35,400	-2,300	-700	-3,000
-100	-24,200	0	-24,700	-48,900	-1,200	43,700	42,600
-100	-32,300	0	-20,600	-53,000	-2,600	-17,700	-20,300
-100	-15,300	0	-28,400	-43,800	300	52,100	52,500
-100	-26,600	0	-23,200	-49,900	-1,900	-17,000	-18,900
-100	-38,500	0	-23,200	-61,800	-2,100	-34,300	-36,400
-100	-28,300	0	-23,200	-51,600	-2,800	-16,300	-19,100
-100	-17,100	0	-23,200	-40,400	-300	99,800	99,500
-100	-23,400	0	-23,200	-46,700	-700	31,400	30,700
-100	-23,600	0	-23,700	-47,300	-1,400	-800	-2,200

Groundwater Inflows to be Included in the Native Yield Estimate

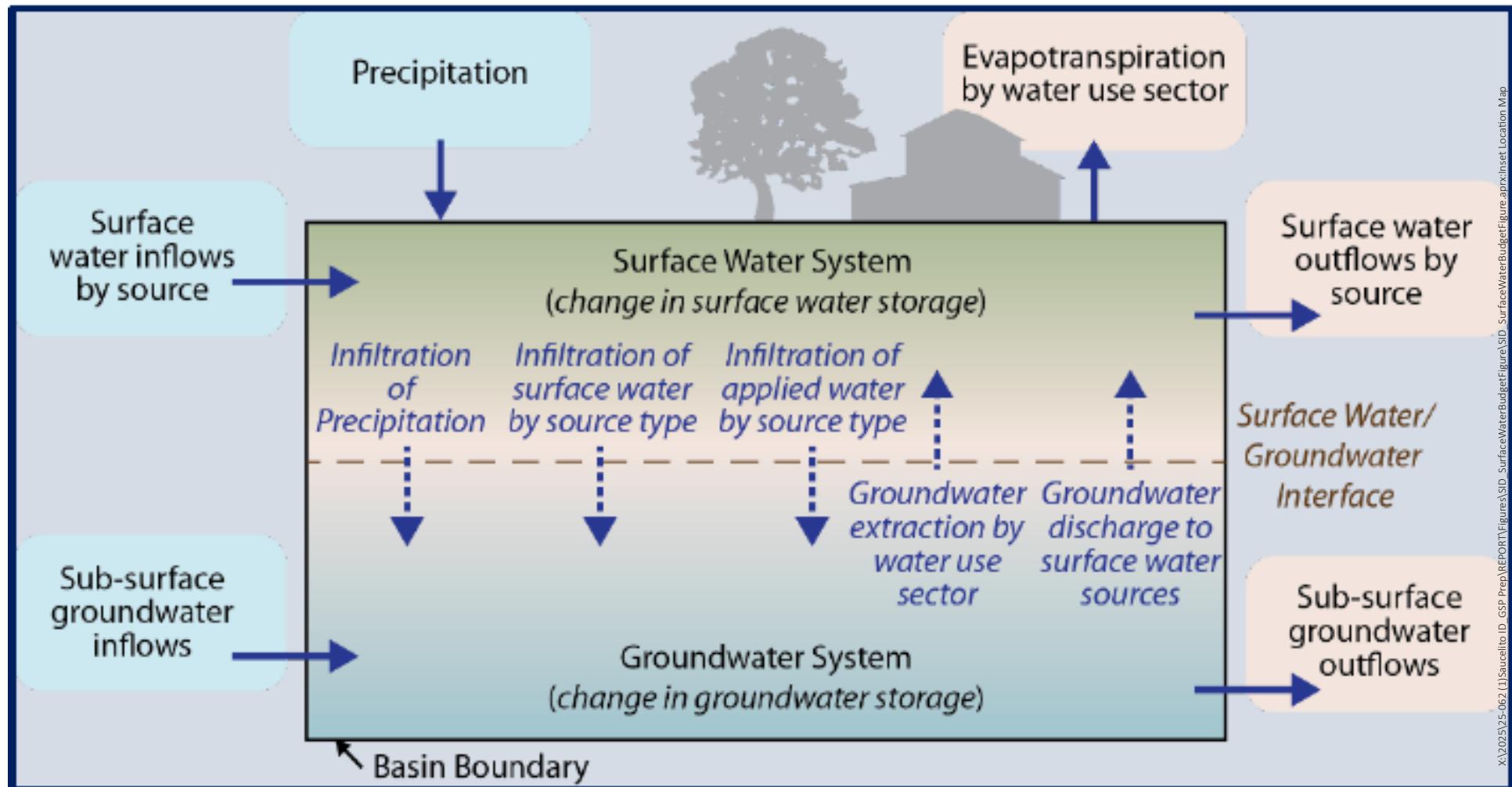

Surface Water or Groundwater Outflows Not Included in Native Yield Estimate

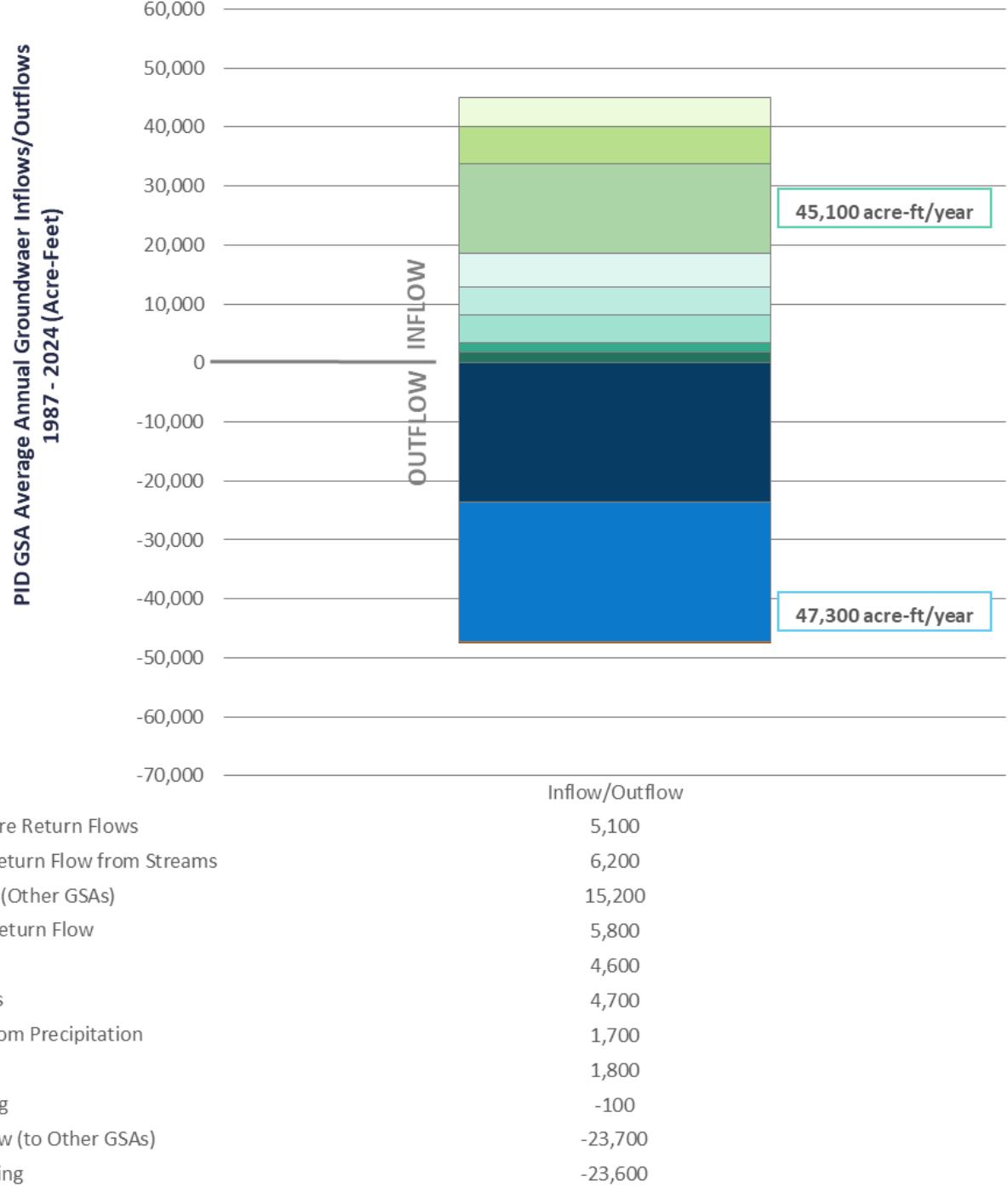
Table 2-8. PID Water Budget Historical and Projected

Water Year	Mountain-Block Recharge	Recharge (Deep Percolation, Streambed Infiltration, Artificial Recharge)	Agricultural Return Flows	Municipal Pumping	Agricultural Wells	Lateral Subsurface Flow	Vertical Flows (Top)	Vertical Flows (bottom)	IN	OUT	Total Pumping	Storage Change
2025	0	12,500	8,700	-100	-18,000	-7,700	16,500	-16,500	60,700	-60,700	-18,100	-4,600
2026	0	12,100	9,000	-100	-23,100	-6,200	17,300	-17,300	70,500	-70,500	-23,200	-8,300
2027	0	7,800	9,600	-100	-28,400	-3,200	17,800	-17,800	70,500	-70,500	-28,600	-14,400
2028	0	5,600	9,200	-100	-28,000	-3,700	18,400	-18,400	69,800	-69,800	-28,100	-17,000
2029	0	6,600	7,700	-100	-21,000	-4,000	16,500	-16,500	61,800	-61,800	-21,100	-10,800
2030	0	3,000	10,500	-100	-27,500	-4,200	17,800	-17,800	68,200	-68,200	-27,600	-18,200
2031	0	21,200	9,100	-100	-16,800	-5,000	17,800	-17,800	69,200	-69,200	-16,900	8,400
2032	0	5,900	10,800	-100	-27,500	-7,000	19,500	-19,500	71,400	-71,400	-27,700	-18,000
2033	0	38,800	8,900	-100	-12,500	-10,900	18,100	-18,100	83,400	-83,300	-12,600	24,200
2034	0	25,200	11,800	-100	-20,000	-12,900	19,700	-19,700	78,800	-78,800	-20,100	4,000
2035	0	37,200	9,600	-100	-17,400	-14,900	20,700	-20,700	88,600	-88,500	-17,400	14,400
2036	0	46,800	7,100	-100	-9,400	-17,500	18,900	-18,900	89,100	-89,100	-9,500	27,000
2037	0	11,400	9,500	-100	-19,200	-13,800	19,600	-19,600	70,500	-70,500	-19,300	-12,200
2038	0	14,800	10,400	-100	-28,800	-9,300	21,200	-21,200	79,700	-79,700	-28,900	-13,100
2039	0	8,100	9,500	-100	-23,300	-11,400	20,500	-20,500	72,500	-72,500	-23,300	-17,100
2040	0	12,800	10,900	-100	-31,100	-10,300	22,500	-22,500	82,400	-82,400	-31,200	-17,900
2041	0	10,400	8,800	-100	-26,400	-7,600	20,400	-20,400	70,800	-70,800	-26,500	-14,900
2042	0	5,600	10,300	-100	-34,800	-6,900	20,700	-20,700	78,000	-78,100	-34,900	-25,900
2043	0	25,800	6,800	-100	-15,300	-7,800	17,700	-17,700	73,900	-73,900	-15,400	9,400
2044	0	46,300	5,500	-100	-15,500	-11,800	17,900	-17,900	92,100	-92,200	-15,600	24,400
2045	0	2,800	9,100	-100	-34,500	-9,200	20,500	-20,500	76,600	-76,600	-34,500	-32,000
2046	0	8,900	8,800	-100	-30,900	-8,200	20,500	-20,500	76,800	-76,800	-31,000	-21,500
2047	0	6,200	8,000	-100	-19,200	-10,000	18,400	-18,400	65,300	-65,300	-19,300	-15,200
2048	0	29,500	6,000	-100	-10,900	-12,100	16,500	-16,500	69,600	-69,600	-11,000	12,500
2049	0	51,600	4,800	-100	-15,800	-12,500	17,200	-17,200	94,000	-94,100	-15,900	28,000
2050	0	10,100	5,500	-100	-18,300	-9,800	17,100	-17,100	62,100	-62,100	-18,400	-12,600
2051	0	1,800	8,400	-100	-30,700	-7,500	18,900	-18,900	71,900	-71,900	-30,800	-28,000
2052	0	900	7,800	-100	-37,700	-4,800	18,900	-18,900	78,000	-78,000	-37,800	-33,900
2053	0	400	6,700	-100	-32,400	-3,500	16,900	-16,900	73,700	-73,700	-32,500	-28,700
2054	0	12,100	5,900	-100	-16,300	-4,600	14,800	-14,800	63,900	-63,900	-16,400	-3,000
2055	0	68,400	8,200	-100	-24,200	-9,700	17,200	-17,200	122,200	-122,200	-24,300	42,600
2056	0	8,300	8,400	-100	-32,300	-4,700	16,200	-16,200	76,700	-76,700	-32,300	-20,300
2057	0	72,300	7,000	-100	-15,300	-11,500	20,000	-20,000	125,300	-125,400	-15,300	52,500
2058	0	24,700	7,200	-100	-10,800	-18,900	17,400	-17,400	62,500	-62,500	-10,900	2,200
2059	0	24,800	7,200	-100	-10,700	-20,100	17,200	-17,200	61,100	-61,100	-10,800	1,000
2060	0	24,800	7,200	-100	-10,800	-20,900	17,400	-17,400	61,400	-61,400	-10,900	200
2061	0	24,800	7,200	-100	-10,800	-21,500	17,600	-17,600	61,700	-61,700	-10,900	-400
2062	0	24,700	7,200	-100	-10,700	-20,900	17,400	-17,400	60,700	-60,700	-10,800	300
2063	0	24,800	7,200	-100	-10,700	-21,100	17,400	-17,400	60,400	-60,300	-10,800	200
2064	0	24,700	7,200	-100	-10,600	-21,400	17,400	-17,400	60,300	-60,300	-10,700	-100
2065	0	24,700	7,200	-100	-10,500	-21,600	17,600	-17,600	60,300	-60,300	-10,600	-300
2066	0	24,700	7,200	-100	-10,500	-22,000	17,800	-17,800	60,600	-60,600	-10,600	-600
2067	0	24,700	7,200	-100	-10,300	-22,200	17,800	-17,800	60,600	-60,500	-10,400	-700
2068	0	24,700	7,200	-100	-10,200	-21,900	17,700	-17,700	59,800	-59,700	-10,300	-400
2069	0	24,700	7,200	-100	-10,200	-21,800	17,600	-17,600	59,400	-59,200	-10,300	-300
2070	0	24,600	7,200	-100	-10,300	-21,800	17,600	-17,600	59,100	-59,100	-10,400	-300

Table 2-8. PID Water Budget Historical and Projected

Water Year	Mountain-Block Recharge	Recharge (Deep Percolation, Streambed Infiltration, Artificial Recharge)	Agricultural Return Flows	Municipal Pumping	Agricultural Wells	Lateral Subsurface Flow	Vertical Flows (Top)	Vertical Flows (bottom)	IN	OUT	Total Pumping	Storage Change
Historical Average	0	24,700	7,200	-100	-10,300	-21,700	17,500	-17,500	58,600	-58,600	-10,400	-200
Projected Average	0	24,700	7,200	-100	-10,200	-21,700	17,500	-17,500	58,300	-58,300	-10,300	-100

Data sources:



Luhdorff & Scalmanini

Surface Water Inflow and Outflow Components

Groundwater Sustainability Plan Porterville Irrigation District GSA, Tule Subbasin

Figure 2-38

